A generalization of the flat cone condition for regularity of solutions of elliptic equations
HTML articles powered by AMS MathViewer
- by Gary M. Lieberman
- Proc. Amer. Math. Soc. 100 (1987), 289-294
- DOI: https://doi.org/10.1090/S0002-9939-1987-0884468-6
- PDF | Request permission
Abstract:
Barrier arguments are used to prove regularity of boundary points for a large class of uniformly elliptic operators when the domain satisfies a geometric condition. The condition is that the exterior of the domain contains a suitable lower dimensional set.References
- Yu. A. Alkhutov, On the regularity of boundary points with respect to the Dirichlet problem for second-order elliptic equations, Mat. Zametki 30 (1981), no. 3, 333–342, 461 (Russian). MR 633981
- A. Azzam, Smoothness properties of solutions of mixed boundary value problems for elliptic equations in sectionally smooth $n$-dimensional domains, Ann. Polon. Math. 40 (1981), no. 1, 81–93. MR 645800, DOI 10.4064/ap-40-1-81-93
- Patricia Bauman, A Wiener test for nondivergence structure, second-order elliptic equations, Indiana Univ. Math. J. 34 (1985), no. 4, 825–844. MR 808829, DOI 10.1512/iumj.1985.34.34045
- Kai Lai Chung, Lectures from Markov processes to Brownian motion, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 249, Springer-Verlag, New York-Berlin, 1982. MR 648601
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
- Olga A. Ladyzhenskaya and Nina N. Ural’tseva, Linear and quasilinear elliptic equations, Academic Press, New York-London, 1968. Translated from the Russian by Scripta Technica, Inc; Translation editor: Leon Ehrenpreis. MR 0244627 E. M. Landis, $s$-capacity and its application to the study of solutions of a second order elliptic equation with discontinuous coefficients, Math. USSR-Sb. 5 (1968), 177-204.
- Gary M. Lieberman, Mixed boundary value problems for elliptic and parabolic differential equations of second order, J. Math. Anal. Appl. 113 (1986), no. 2, 422–440. MR 826642, DOI 10.1016/0022-247X(86)90314-8
- W. Littman, G. Stampacchia, and H. F. Weinberger, Regular points for elliptic equations with discontinuous coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 17 (1963), 43–77. MR 161019
- Keith Miller, Barriers on cones for uniformly elliptic operators, Ann. Mat. Pura Appl. (4) 76 (1967), 93–105 (English, with Italian summary). MR 221087, DOI 10.1007/BF02412230
- Keith Miller, Exceptional boundary points for the nondivergence equation which are regular for the Laplace equation and vice-versa, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 22 (1968), 315–330. MR 229961
- Murray H. Protter and Hans F. Weinberger, Maximum principles in differential equations, Springer-Verlag, New York, 1984. Corrected reprint of the 1967 original. MR 762825, DOI 10.1007/978-1-4612-5282-5
- Carlo Pucci, Regolarità alla frontiera di soluzioni di equazioni ellittiche, Ann. Mat. Pura Appl. (4) 65 (1964), 311–328 (Italian, with English summary). MR 171990, DOI 10.1007/BF02418230
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 100 (1987), 289-294
- MSC: Primary 35B45; Secondary 31B30, 35J67
- DOI: https://doi.org/10.1090/S0002-9939-1987-0884468-6
- MathSciNet review: 884468