DAUGAVET’S EQUATION AND OPERATORS ON $L^1(\mu)$

JAMES R. HOLUB

ABSTRACT. Generalizing a result of Babenko and Pichugov, it is shown that if T is a weakly compact operator on $L^1(\mu)$, where μ is a σ-finite nonatomic measure, then $\|I + T\| = 1 + \|T\|$. A characterization of all operators T on $L^1(\mu)$ having this property is also given.

In [2] Daugavet proved that if T is a compact operator on $C(\mu)$, then $\|I + T\| = 1 + \|T\|$, while Babenko and Pichugov [1] subsequently showed the same is true for a compact operator on $L^1(\mu)$ (see [6] for recent extensions). In general, if X is a Banach space and $T \in \mathcal{L}(X)$, then T is said to satisfy Daugavet’s equation [4] if $\|I - T\| = 1 + \|T\|$. This property of an operator arises naturally in the consideration of problems of best approximation in function spaces where it has been utilized by a number of authors (e.g. [4], and the references cited in [1]).

In a recent paper [5] it was shown that Daugavet’s equation actually holds for any weakly compact operator on $C(\mu)$. The purpose of this note is to give an analogous extension of the theorem of Babenko and Pichugov to weakly compact operators by proving that if μ is a σ-finite nonatomic measure on a space S, and T is a weakly compact operator on $L^1(\mu)$, then $\|I + T\| = 1 + \|T\|$ (Theorem 1). Related results concerning extensions and generalizations of this theorem, including a characterization of all operators T on $L^1(\mu)$ for which $\|I + T\| = 1 + \|T\|$ (Theorem 2) are also given.

We begin with a simple result concerning the norming of operators on $L^1(\mu)$. As usual we denote by $\mathcal{L}(X)$ the space of all bounded linear operators on a Banach space X, by χ_A the characteristic function of a measurable set $A \subset S$, and by $\|f\|_1$ and $\|g\|_\infty$, the norms of functions $f \in L^1(\mu)$ and $g \in L^\infty(\mu)$, respectively. The complement of a set A in S is denoted by A'.

PROPOSITION 1. Let $T \in \mathcal{L}(L^1(\mu))$. Then given any $\varepsilon > 0$ there is a measurable set $A \subset S$ for which $0 < m(A) < \varepsilon$ and $\|T(\chi_A/m(A))\|_1 > \|T\| - \varepsilon$.

PROOF. Since μ is σ-finite, $(L^1(\mu))^* = L^\infty(\mu)$. Therefore if $T \in \mathcal{L}(L^1(\mu))$, then $T^* \in \mathcal{L}(L^\infty(\mu))$ and $\|T\| = \|T^*\| = \sup_{\|g\|_\infty = 1} \|T^*g\|_\infty$. Hence given any $\varepsilon > 0$ there is a function $g \in L^\infty(\mu)$ for which $\|g\|_\infty = 1$ and $\|T^*g\|_\infty > \|T\| - \varepsilon/2$. Since $\|T^*g\|_\infty = \text{ess sup}_t |(T^*g)(t)|$ it follows that there is a measurable set $A \subset S$ for which $m(A) > 0$ and $|(T^*g)(t)| > \|T\| - \varepsilon$ for all $t \in S$. Replacing A (if necessary) by a subset $B \subset A$ for which $0 < m(B) < \varepsilon$ and on which the sign of $(T^*g)(t)$ is constant (which may be done since μ is nonatomic), and replacing g by $(-g)$ if...
this sign is negative, we may assume $0 < m(A) < \varepsilon$ and $(T^*g)(t) > \|T\| - \varepsilon$ for all $t \in A$. It follows that

$$\left\| T \left(\frac{\chi_A}{m(A)} \right) \right\|_1 \geq \left\langle g, T \left(\frac{\chi_A}{m(A)} \right) \right\rangle = \left\langle T^*g, \frac{\chi_A}{m(A)} \right\rangle = \int_S (T^*g)(t) \frac{\chi_A(t)}{m(A)} \, dt$$

$$= \frac{1}{m(A)} \int_A (T^*g)(t) \, dt > \|T\| - \varepsilon,$$

and the proposition is proved.

Using this result we can now obtain the generalization of the theorem of Babenko and Pichugov mentioned earlier.

THEOREM 1. If T is a weakly compact operator on $L^1(\mu)$, then $\|I + T\| = 1 + \|T\|.$

PROOF. Suppose T is a weakly compact operator on $L^1(\mu)$. Since $\|I + T\| \leq 1 + \|T\|$, we need only prove that $\|I + T\| \geq 1 + \|T\|.$

Let $\varepsilon > 0$ be given. Since T is weakly compact the set $\{Tf \mid \|f\|_1 \leq 1\}$ is weakly sequentially compact in $L^1(\mu)$ by the Eberlein-Smulian theorem (e.g. [3, p. 430]), and hence the set $\{Tf \mid \|f\|_1 \leq 1\}$ is also a weakly sequentially compact subset of $L^1(\mu)$ [3, p. 293]. It follows that for the given $\varepsilon > 0$ there exists a $\delta > 0$ so that if A is any measurable subset of S with $m(A) < \delta$, then $\int_A |(Tf)(t)| \, dt < \varepsilon/4$ for all $f \in L^1(\mu)$ satisfying $\|f\|_1 \leq 1$ [3, p. 294].

By Proposition 1 there is a set $A \subset S$ for which $0 < m(A) < \delta$ and

$$\|T(\chi_A/m(A))\|_1 > \|T\| - \varepsilon/2.$$

Setting $f = \chi_A/m(A)$ we have $\|f\|_1 = 1$ and

$$\|f + T f\|_1 = \int_S |(f + Tf)(t)| \, dt - \int_A |(Tf)(t)| \, dt + \int_{A'} |(Tf)(t)| \, dt$$

$$\geq \int_A |f(t)| \, dt - \int_A |(Tf)(t)| \, dt + \int_{A'} |(Tf)(t)| \, dt$$

$$= \|f\|_1 + \int_S |(Tf)(t)| \, dt - 2 \int_A |(Tf)(t)| \, dt$$

$$\geq 1 + \left(\|T\| - \frac{\varepsilon}{2} \right) - \frac{2\varepsilon}{4} = 1 + \|T\| - \varepsilon.$$

Since $\varepsilon > 0$ is arbitrary it follows that $\|I + T\| \geq 1 + \|T\|$, and the theorem is proved.

We have stated and proved Theorem 1 in a straightforward manner (rather than deriving it as a corollary to a more general, if less transparent, result) in order to emphasize its simplicity and its relationship to the results of [1, 2, and 5]. We now show that one can actually characterize those operators T in $L(L^1(\mu))$ for which $\|I + T\| = 1 + \|T\|$ in terms of a condition on T which has an interesting relationship to the norming property of T expressed in Proposition 1. Before stating and proving the characterization we note the following simple (and probably well known) result concerning the norm of an adjoint operator.

PROPOSITION 2. Let X be a Banach space and $T \in L(X)$. Then $\|T^*\| = \sup_{f \in E} \|T^*f\|$, where E denotes the set of extreme points of the unit ball of X^*.
PROOF. By definition, \(\|T^*\| \geq \sup_{f \in E} \|T^* f\| \). Suppose \(\|T^*\| > \sup_{f \in E} \|T^* f\| + \varepsilon \) for some \(\varepsilon > 0 \). Choose \(f_0 \in X^* \) and \(x_0 \in X \) so that \(\|f_0\| = \|x_0\| = 1 \) and \(\langle T^* f_0, x_0 \rangle > \|T^*\| - \varepsilon/4 \). By the Krein-Milman theorem [3, p. 440] there is a convex combination \(\sum_{i=1}^{n} \lambda_i f_i \) of members of \(E \) for which \(\langle f_0 - \sum_{i=1}^{n} \lambda_i f_i, T x_0 \rangle < \varepsilon/4 \). It follows that

\[
\left| \langle T^* f_0, x_0 \rangle \right| < \frac{\varepsilon}{4} + \sum_{i=1}^{n} \lambda_i \left| \langle T^* f_i, x_0 \rangle \right|
\leq \frac{\varepsilon}{4} \sup_{1 \leq i \leq n} \left| \langle T^* f_i, x_0 \rangle \right| \leq \frac{\varepsilon}{4} + \sup_{f \in E} \|T^* f\|,
\]

so

\[
\|T^*\| - \frac{\varepsilon}{4} < \left| \langle T^* f_0, x_0 \rangle \right| < \frac{\varepsilon}{4} + \sup_{f \in E} \|T^* f\| < \frac{\varepsilon}{4} + (\|T^*\| - \varepsilon).
\]

That is, \(\|T^*\| < \|T^*\| - \varepsilon/2 \), a contradiction. Therefore \(\|T^*\| \leq \sup_{f \in E} \|T^* f\| \), and the proposition is proved.

Now in Proposition 1 we showed that if \(T \in \mathcal{L}(L^1(\mu)) \), then for any \(\varepsilon > 0 \) there is a set \(B \subset S \) for which \(0 < m(B) < \varepsilon \) and

\[
\int_S \left| T \left(\frac{\chi_B}{m(B)} \right) t \right| dt > \|T\| - \varepsilon.
\]

Thus there is some set \(A \subset S \) (e.g. the set \(A = \{ t \mid T(\chi_B/m(B))(t) > 0 \} \)) for which

\[
\int_A \left(\frac{\chi_B}{m(B)} \right) (t) dt - \int_A T \left(\frac{\chi_B}{m(B)} \right) t dt > \|T\| - \varepsilon,
\]

although in general the sets \(A \) and \(B \) are unrelated. We now show that the operators \(T \in \mathcal{L}(L^1(\mu)) \) for which \(\|I + T\| = 1 + \|T\| \) are precisely those for which the sets \(A \) and \(B \) in the above inequality can always be assumed to satisfy the relation \(B \subset A \).

THEOREM 2. An operator \(T \in \mathcal{L}(L^1(\mu)) \) has the property that \(\|I + T\| = 1 + \|T\| \) \iff for every \(\varepsilon > 0 \) there are measurable sets \(A \) and \(B \) in \(S \) for which \(B \subset A \) and

\[
\int_A \left(\frac{\chi_B}{m(B)} \right) (t) dt - \int_A T \left(\frac{\chi_B}{m(B)} \right) t dt > \|T\| - \varepsilon.
\]

PROOF. Suppose \(T \in \mathcal{L}(L^1(\mu)) \) and \(\|I + T\| = 1 + \|T\| \). Then \(T^* \in \mathcal{L}(L^\infty(\mu)) \) and \(1 + \|T^*\| = \|I + T\| = 1 + \|T\| + \|I + T^*\| \), so by Proposition 2 we have \(1 + \|T^*\| = \sup_{g \in E} \|g + T^* g\|_\infty \), where \(E \) is the set of extreme points of the unit ball in \(L^\infty(\mu) \). But \(g \in E \Rightarrow \|g(t)\| = 1 \) a.e., so for any \(\varepsilon > 0 \) there is a corresponding function \(g_0 \in L^\infty(\mu) \) for which \(\|g_0(t)\| = 1 \) a.e. and \(\|g_0 + T^* g_0\|_\infty > 1 + \|T^*\| - \varepsilon/2 \). Since

\[
\|g_0 + T^* g_0\|_\infty = \text{ess sup}_t |g_0(t) + (T^* g_0)(t)|
\]

there must be a set \(B \subset S \) of positive measure for which

\[
\inf_{t \in B} |g_0(t) + (T^* g_0)(t)| > 1 + \|T^*\| - \varepsilon.
\]

It follows, since \(|g_0(t)| = 1 \) a.e. and \(\|T^* g_0\|_\infty \leq \|T^*\| \), that \((T^* g_0)(t) \) must have the same sign as \(g_0(t) \) and \(|(T^* g_0)(t)| > \|T^*\| - \varepsilon \) for all \(t \in B \). Hence we may assume \(g_0(t) = 1 \) and \((T^* g_0)(t) > \|T^*\| - \varepsilon \) for all \(t \in B \), since there is a subset of
B with positive measure on which either \(g_0 \) or \((-g_0)\) has this property. If we set \(f_0 = \chi_B/m(B) \), then
\[
\int_S g_0(t)(Tf_0)(t)\,dt = \langle g_0, Tf_0 \rangle = \langle T^*g_0, f_0 \rangle = \int_S (T^*g_0)(t)f_0(t)\,dt
\]
\[
= \frac{1}{m(B)} \int_B (T^*g_0)(t)\,dt > \|T^*\| - \varepsilon
\]
(since \((T^*g_0)(t) > \|T^*\| - \varepsilon\) for \(t \in B \)). Setting \(A = \{ t | g_0(t) = 1 \} \) we see that \(B \subseteq A \) and also that
\[
\int_A T \left(\frac{\chi_B}{m(B)} \right)(t)\,dt - \int_{A'} T \left(\frac{\chi_B}{m(B)} \right)(t)\,dt
\]
\[
= \int_S T \left(\frac{\chi_B}{m(B)} \right)(t)g_0(t)\,dt = \int_0^1 (Tf_0)(t)g_0(t)\,dt > \|T^*\| - \varepsilon.
\]
Since \(\|T\| = \|T^*\| \) it follows that \(T \) satisfies the stated condition.

Conversely, suppose \(T \) satisfies the condition and \(\varepsilon > 0 \) is given. Then there are measurable sets \(A \) and \(B \) for which \(B \subseteq A \) and
\[
\int_A T \left(\frac{\chi_B}{m(B)} \right)(t)\,dt - \int_{A'} T \left(\frac{\chi_B}{m(B)} \right)(t)\,dt > \|T\| - \varepsilon.
\]
Again, for simplicity of notation, let \(f_0 = \chi_B/m(B) \). If we define
\[
g_0(t) = \begin{cases} 1 & \text{if } t \in A, \\ -1 & \text{if } t \notin A,
\end{cases}
\]
then it follows that
\[
\langle Tf_0, g_0 \rangle = \int_S (Tf_0)(t)g_0(t)\,dt > \|T\| - \varepsilon,
\]
where \(g_0(t) = 1 \) for all \(t \in B \) since \(B \subseteq A \). Therefore
\[
\|f_0 + Tf_0\|_1 \geq \langle f_0 + Tf_0, g_0 \rangle = \langle f_0, g_0 \rangle + \langle Tf_0, g_0 \rangle
\]
\[
\geq \int_S f_0(t)g_0(t)\,dt + (\|T\| - \varepsilon) = 1 + \|T\| - \varepsilon,
\]
since \(f_0 = \chi_B/m(B) \) and \(g_0(t) = 1 \) for all \(t \in B \). It follows that \(\|I + T\| \geq 1 + \|T\| \), and since \(\|I + T\| \leq 1 + \|T\| \) we see that \(\|I + T\| = 1 + \|T\| \). The theorem is completely proved.

Although Theorem 2 is generally rather awkward to apply, it is convenient to use in certain particular cases. As an example we consider the \(L^1(\mu) \)-analogue of a result of Franchetti and Cheney [4] concerning Daugavet’s equation in the space \(C(S) \).

Let \(k \) be a measurable subset of \(S \) for which \(0 < m(k) < m(S) \) and let \(R: L^1(\mu) \rightarrow L^1[k] \) be the restriction map. Suppose \(E: L^1[k] \rightarrow L^1(\mu) \) is some bounded linear extension mapping. Then \(ER \) is a projection on \(L^1(\mu) \) with \(\|ER\| = \|E\| \).

In the setting of the result of Franchetti and Cheney mentioned above \(k \) is taken instead to be a closed, nonopen, subset of \(S \), \(R \) and \(E \) are taken to be the analogous restriction and extension operators on \(C(S) \) and \(C(k) \), respectively, and it is shown that for \(\text{any} \) such \(E \) the projection \(ER \) on \(C(S) \) satisfies Daugavet’s equation—i.e.
\[\| I - ER \| = 1 + \| E \|. \] In contrast, for the \(L^1(\mu) \) case we have

Proposition 3. There is no bounded linear extension mapping \(E: L^1[k] \to L^1(\mu) \) for which the projection \(ER \) on \(L^1(\mu) \) satisfies Daugavet’s equation.

Proof. Let \(K \subseteq S \) for which \(0 < m(k) < m(S) \), let \(R: L^1(\mu) \to L^1[k] \) be the restriction map, and let \(E: L^1[k] \to L^1(\mu) \) be any bounded linear extension mapping. If \(\| I - ER \| = 1 + \| E \| \), then by Theorem 2 it must be true that given any \(\varepsilon > 0 \) there exist measurable subsets \(A \) and \(B \) of \(S \) with \(B \subseteq A \) for which

\[
\left| \int_A (-ER) \left(\frac{\chi_B}{m(B)} \right) \, dt - \int_A' (-ER) \left(\frac{\chi_B}{m(B)} \right) \, dt \right| > \| E \| - \varepsilon.
\]

That is, since \(R(\chi_B) = \chi_{B \cap k} \),

\[
\frac{\| E \| m(B \cap k)}{m(B)} \geq \int_{A'} E \left(\frac{\chi_{B \cap k}}{m(B)} \right) \, dt - \int_A E \left(\frac{\chi_{B \cap k}}{m(B)} \right) \, dt > \| E \| - \varepsilon.
\]

In particular, \(m(B \cap k)/m(B) \geq 1 - \varepsilon \), since \(\| E \| \geq 1 \). Moreover, since \(B \subseteq A \) we then have

\[
\int_{A'} E \left(\frac{\chi_{B \cap k}}{m(B)} \right) \, dt - \int_{A \setminus B} E \left(\frac{\chi_{B \cap k}}{m(B)} \right) \, dt - \int_{B \setminus k} E \left(\frac{\chi_{B \cap k}}{m(B)} \right) \, dt > \| E \| - \varepsilon,
\]

or

\[
\left[\int_{A'} E \left(\frac{\chi_{B \cap k}}{m(B)} \right) \, dt - \int_{A \setminus B} E \left(\frac{\chi_{B \cap k}}{m(B)} \right) \, dt - \int_{B \setminus k} E \left(\frac{\chi_{B \cap k}}{m(B)} \right) \, dt \right] - \frac{m(B \cap k)}{m(B)} \int_{B \cap k} E \left(\frac{\chi_{B \cap k}}{m(B \cap k)} \right) \, dt > \| E \| - \varepsilon.
\]

Now \(A', A \setminus B \), and \(B \setminus k \) are disjoint, \(\| \chi_{B \cap k}/m(B) \|_1 \leq 1 \), and \(m(B \cap k)/m(B) \geq 1 - \varepsilon \), so since \(E(\chi_{B \cap k})(t) = \chi_{B \cap k}(t) \) for \(t \in B \cap k \) it follows from this that \(\| E \| - (1 - \varepsilon) > \| E \| - \varepsilon \), or \(1 < 2\varepsilon \). Since \(\varepsilon > 0 \) arbitrarily we have reached a contradiction, and the proposition is established.

Remarks. (1) It was observed in [5] that if \(S \) is a compact Hausdorff space and \(T \in L(C(S)) \), then either \(\| I + T \| \) or \(\| I - T \| = 1 + \| T \| \). In particular, if \(\mu \) is a positive measure and \(T \in L(L^\infty(\mu)) \), then (since \(L^\infty(\mu) \) is isometric to some such \(C(S) \) [3, p. 445]) either \(\| I + T \| \) or \(\| I - T \| = 1 + \| T \| \). Consequently, if \(T \in L(L^1(\mu)) \), then \(T^* \in L(L^\infty(\mu)) \), so either \(\| I + T^* \| \) or \(\| I - T^* \| = 1 + \| T^* \| = 1 + \| T \| \). It follows, then, that either \(\| I + T \| \) or \(\| I - T \| = 1 + \| T \| \) for any \(T \in L(L^1(\mu)) \).

(2) The condition that \(\mu \) be nonatomic is necessary for the validity of our results. For example, if \(T = (-1)e_1 \otimes e_1 \in L(l^1) \), then \(T \) is compact; yet

\[
\| I + T \| = \sup_n \| e_n - (e_1, e_n)e_1 \| = 1 \neq 1 + \| T \|.
\]

In the same way, if the measure space \((S, \Sigma, \mu) \) has an atom \(A \in \Sigma \), then by a similar construction there is a one-dimensional operator \(T \in L(\mu) \) for which \(\| I + T \| \neq 1 + \| T \| \).

References

DEPARTMENT OF MATHEMATICS, VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY, BLACKSBURG, VIRGINIA 24061