Daugavet’s equation and operators on $L^ 1(\mu )$
HTML articles powered by AMS MathViewer
- by James R. Holub
- Proc. Amer. Math. Soc. 100 (1987), 295-300
- DOI: https://doi.org/10.1090/S0002-9939-1987-0884469-8
- PDF | Request permission
Abstract:
Generalizing a result of Babenko and Pichugov, it is shown that if $T$ is a weakly compact operator on ${L^1}(\mu )$, where $\mu$ is a $\sigma$-finite nonatomic measure, then $\left \| {I + T} \right \| = 1 + \left \| T \right \|$. A characterization of all operators $T$ on ${L^1}(\mu )$ having this property is also given.References
- V. F. Babenko and S. A. Pichugov, A property of compact operators in the space of integrable functions, Ukrainian Math. J. 33 (1981), 374-376.
- I. K. Daugavet, A property of completely continuous operators in the space $C$, Uspehi Mat. Nauk 18 (1963), no. 5 (113), 157–158 (Russian). MR 0157225
- Nelson Dunford and Jacob T. Schwartz, Linear operators. Part II: Spectral theory. Self adjoint operators in Hilbert space, Interscience Publishers John Wiley & Sons, New York-London, 1963. With the assistance of William G. Bade and Robert G. Bartle. MR 0188745
- C. Franchetti and E. W. Cheney, Minimal projections in tensor-product spaces, J. Approx. Theory 41 (1984), no. 4, 367–381. MR 753032, DOI 10.1016/0021-9045(84)90093-5
- James R. Holub, A property of weakly compact operators on $C[0,1]$, Proc. Amer. Math. Soc. 97 (1986), no. 3, 396–398. MR 840617, DOI 10.1090/S0002-9939-1986-0840617-6
- Herbert Kamowitz, A property of compact operators, Proc. Amer. Math. Soc. 91 (1984), no. 2, 231–236. MR 740177, DOI 10.1090/S0002-9939-1984-0740177-2
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 100 (1987), 295-300
- MSC: Primary 47B38; Secondary 47B05
- DOI: https://doi.org/10.1090/S0002-9939-1987-0884469-8
- MathSciNet review: 884469