Functions in the Fresnel class
HTML articles powered by AMS MathViewer
- by K. S. Chang, G. W. Johnson and D. L. Skoug
- Proc. Amer. Math. Soc. 100 (1987), 309-318
- DOI: https://doi.org/10.1090/S0002-9939-1987-0884471-6
- PDF | Request permission
Abstract:
Let $H$ be a separable infinite-dimensional Hilbert space over ${\mathbf {R}}$. The Fresnel class $\mathcal {F}(H)$ of $H$ consists of all Fourier-Stieltjes transforms of bounded Borel measures on $H$. There are several results insuring that various functions of interest in connection with the Feynman integral and quantum mechanics are in $\mathcal {F}(H)$. We give a theorem which has most of these results as corollaries as well as many further corollaries involving the reproducing kernel Hilbert spaces of Gaussian stochastic processes.References
- S. Albeverio, Ph. Blanchard, and R. Høegh-Krohn, Feynman path integrals and the trace formula for the Schrödinger operators, Comm. Math. Phys. 83 (1982), no. 1, 49–76. MR 648358
- S. Albeverio and R. Høegh-Krohn, Feynman path integrals and the corresponding method of stationary phase, Feynman path integrals (Proc. Internat. Colloq., Marseille, 1978) Lecture Notes in Phys., vol. 106, Springer, Berlin-New York, 1979, pp. 3–57. MR 553075
- Sergio A. Albeverio and Raphael J. Høegh-Krohn, Mathematical theory of Feynman path integrals, Lecture Notes in Mathematics, Vol. 523, Springer-Verlag, Berlin-New York, 1976. MR 0495901
- J. Bertrand and B. Gaveau, Transformation canonique et renormalisation pour certaines équations d’évolution, J. Funct. Anal. 50 (1983), no. 1, 81–99. MR 690000, DOI 10.1016/0022-1236(83)90061-7
- Robert Horton Cameron and David Arne Storvick, Some Banach algebras of analytic Feynman integrable functionals, Analytic functions, Kozubnik 1979 (Proc. Seventh Conf., Kozubnik, 1979), Lecture Notes in Math., vol. 798, Springer, Berlin, 1980, pp. 18–67. MR 577446
- R. H. Cameron and D. A. Storvick, A simple definition of the Feynman integral, with applications, Mem. Amer. Math. Soc. 46 (1983), no. 288, iv+46. MR 719157, DOI 10.1090/memo/0288
- Kun Soo Chang, G. W. Johnson, and D. L. Skoug, Necessary and sufficient conditions for the Fresnel integrability of certain classes of functions, J. Korean Math. Soc. 21 (1984), no. 1, 21–29. MR 760389
- Kun Soo Chang, G. W. Johnson, and D. L. Skoug, The Feynman integral of quadratic potentials depending on two time variables, Pacific J. Math. 122 (1986), no. 1, 11–33. MR 825220 A. M. Chebotarev, $\tau$-mappings and functional integrals, Soviet Math. Dokl. 16 (1975), 1536-1540.
- Ph. Combe, R. Høegh-Krohn, R. Rodriguez, M. Sirugue, and M. Sirugue-Collin, Poisson processes on groups and Feynman path integrals, Comm. Math. Phys. 77 (1980), no. 3, 269–288. MR 594304
- David Elworthy and Aubrey Truman, Feynman maps, Cameron-Martin formulae and anharmonic oscillators, Ann. Inst. H. Poincaré Phys. Théor. 41 (1984), no. 2, 115–142 (English, with French summary). MR 769152
- Pavel Exner, Open quantum systems and Feynman integrals, Fundamental Theories of Physics, D. Reidel Publishing Co., Dordrecht, 1985. MR 766559, DOI 10.1007/978-94-009-5207-2
- R. P. Feynman, Space-time approach to non-relativistic quantum mechanics, Rev. Modern Physics 20 (1948), 367–387. MR 0026940, DOI 10.1103/revmodphys.20.367
- Takeyuki Hida, Brownian motion, Applications of Mathematics, vol. 11, Springer-Verlag, New York-Berlin, 1980. Translated from the Japanese by the author and T. P. Speed. MR 562914
- G. W. Johnson, The equivalence of two approaches to the Feynman integral, J. Math. Phys. 23 (1982), no. 11, 2090–2096. MR 680005, DOI 10.1063/1.525250
- G. W. Johnson, An unsymmetric Fubini theorem, Amer. Math. Monthly 91 (1984), no. 2, 131–133. MR 729555, DOI 10.2307/2322111
- Gerald W. Johnson and Michel L. Lapidus, Generalized Dyson series, generalized Feynman diagrams, the Feynman integral and Feynman’s operational calculus, Mem. Amer. Math. Soc. 62 (1986), no. 351, vi+78. MR 849943, DOI 10.1090/memo/0351
- G. W. Johnson and D. L. Skoug, Notes on the Feynman integral. I, Pacific J. Math. 93 (1981), no. 2, 313–324. MR 623567
- G. W. Johnson and D. L. Skoug, Notes on the Feynman integral. I, Pacific J. Math. 93 (1981), no. 2, 313–324. MR 623567
- G. W. Johnson and D. L. Skoug, Notes on the Feynman integral. I, Pacific J. Math. 93 (1981), no. 2, 313–324. MR 623567 —, Stability theorems for the Feynman integral, Suppl. Rendi. Circ. Mat. Palermo (Proc. Conf., Palermo, October, 1984) (to appear).
- G. Kallianpur, The role of reproducing kernel Hilbert spaces in the study of Gaussian processes, Advances in Probability and Related Topics, Vol. 2, Dekker, New York, 1970, pp. 49–83. MR 0283866
- Gopinath Kallianpur and C. Bromley, Generalized Feynman integrals using analytic continuation in several complex variables, Stochastic analysis and applications, Adv. Probab. Related Topics, vol. 7, Dekker, New York, 1984, pp. 217–267. MR 776983
- G. Kallianpur, D. Kannan, and R. L. Karandikar, Analytic and sequential Feynman integrals on abstract Wiener and Hilbert spaces, and a Cameron-Martin formula, Ann. Inst. H. Poincaré Probab. Statist. 21 (1985), no. 4, 323–361 (English, with French summary). MR 823080
- J. Kuelbs, A strong convergence theorem for Banach space valued random variables, Ann. Probability 4 (1976), no. 5, 744–771. MR 420771, DOI 10.1214/aop/1176995982
- Hui Hsiung Kuo, Gaussian measures in Banach spaces, Lecture Notes in Mathematics, Vol. 463, Springer-Verlag, Berlin-New York, 1975. MR 0461643
- Michel L. Lapidus, The differential equation for the Feynman-Kac formula with a Lebesgue-Stieltjes measure, Lett. Math. Phys. 11 (1986), no. 1, 1–13. MR 824670, DOI 10.1007/BF00417458
- Jacques Neveu, Mathematical foundations of the calculus of probability, Holden-Day, Inc., San Francisco, Calif.-London-Amsterdam, 1965. Translated by Amiel Feinstein. MR 0198505 C. Park and D. L. Skoug, The Feynman integral of quadratic potentials depending on $n$ time variables (submitted for publication).
- Walter Rudin, Real and complex analysis, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210528
- L. Streit and T. Hida, Generalized Brownian functionals and the Feynman integral, Stochastic Process. Appl. 16 (1984), no. 1, 55–69. MR 723643, DOI 10.1016/0304-4149(84)90175-3
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 100 (1987), 309-318
- MSC: Primary 42B10; Secondary 28C20, 60G15, 81C35
- DOI: https://doi.org/10.1090/S0002-9939-1987-0884471-6
- MathSciNet review: 884471