How many sets are porous?
HTML articles powered by AMS MathViewer
- by Tudor Zamfirescu
- Proc. Amer. Math. Soc. 100 (1987), 383-387
- DOI: https://doi.org/10.1090/S0002-9939-1987-0884484-4
- PDF | Request permission
Abstract:
The notion of a $\sigma$-porous set is often used to sharpen results on sets of first Baire category or of measure zero. It essentially uses the related notion of porosity. We find out in this note that there are quite a few porous sets: In complete convex metric spaces, most totally bounded closed sets are porous! Then we strengthen this result for the case of a Banach space.References
- Errett Bishop and R. R. Phelps, The support functionals of a convex set, Proc. Sympos. Pure Math., Vol. VII, Amer. Math. Soc., Providence, R.I., 1963, pp. 27–35. MR 0154092
- Peter M. Gruber, Results of Baire category type in convexity, Discrete geometry and convexity (New York, 1982) Ann. New York Acad. Sci., vol. 440, New York Acad. Sci., New York, 1985, pp. 163–169. MR 809203, DOI 10.1111/j.1749-6632.1985.tb14550.x —, letter to the author. C. Kuratowski, Topologie. I, PWN, Warszawa, 1958.
- Karl Menger, Untersuchungen über allgemeine Metrik, Math. Ann. 100 (1928), no. 1, 75–163 (German). MR 1512479, DOI 10.1007/BF01448840
- Tudor Zamfirescu, Using Baire categories in geometry, Rend. Sem. Mat. Univ. Politec. Torino 43 (1985), no. 1, 67–88. MR 859850
- Tudor Zamfirescu, Nearly all convex bodies are smooth and strictly convex, Monatsh. Math. 103 (1987), no. 1, 57–62. MR 875352, DOI 10.1007/BF01302711
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 100 (1987), 383-387
- MSC: Primary 54E50; Secondary 46B20, 54E52
- DOI: https://doi.org/10.1090/S0002-9939-1987-0884484-4
- MathSciNet review: 884484