Minimality of geodesics in Grassmann manifolds
HTML articles powered by AMS MathViewer
- by Horacio Porta and Lázaro Recht
- Proc. Amer. Math. Soc. 100 (1987), 464-466
- DOI: https://doi.org/10.1090/S0002-9939-1987-0891146-6
- PDF | Request permission
Abstract:
In the Grassmann manifold of an arbitrary ${C^ * }$-algebra, the geodesics of length less than $\pi$ are curves of minimal length.References
- William Arveson, An invitation to $C^*$-algebras, Graduate Texts in Mathematics, No. 39, Springer-Verlag, New York-Heidelberg, 1976. MR 0512360
- Joseph A. Wolf, Spaces of constant curvature, 2nd ed., University of California, Department of Mathematics, Berkeley, Calif., 1972. MR 0343213
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 100 (1987), 464-466
- MSC: Primary 46L05; Secondary 58B20
- DOI: https://doi.org/10.1090/S0002-9939-1987-0891146-6
- MathSciNet review: 891146