ABSTRACT. Let M be an $(8k + 2)$-dimensional closed spin manifold and N an orientable hypersurface of M with the induced spin structure. If M admits a metric with positive scalar curvature and N represents a nonzero homology class of $H_{8k+1}(M; \mathbb{Z})$, then the KO-characteristic number $a(N)$ vanishes. This result relates to the conjecture by Gromov and Lawson on the vanishing of higher \hat{A}-genera.

1. Introduction and statement of the Theorem. Scalar curvature is one of the simplest invariants of Riemannian manifolds; however, we know that there need be some topological conditions for a manifold to admit a Riemannian metric with positive scalar curvature. For instance, Hitchin [3] proved that the exotic sphere Σ with nonvanishing KO-characteristic number $a(\Sigma)$ does not admit such a metric although the standard sphere definitely admits one.

Moreover there is a topological obstruction, the so-called higher \hat{A}-genus, to admitting a metric with positive scalar curvature (see [2]). The definition is as follows.

Let M be a closed spin manifold and let u be a rational cohomology class of $K(\pi, 1)$. Given a homomorphism from $\pi_1(M)$ to π, we obtain the corresponding map

$$f : M \to K(\pi, 1).$$

Consider the number

$$\hat{A}(u)(M) = \langle \hat{A}(M)f^* (u), [M] \rangle.$$

We call this number a higher \hat{A}-genus of M associated with u. Gromov and Lawson [2] proved the following.

THEOREM [2]. Let M be a closed spin manifold of even dimension. If M admits a metric with positive scalar curvature, then the higher \hat{A}-genus $\hat{A}(u)(M)$ of M vanishes for $\pi = \mathbb{Z}^k$ and for each $u \in H^*(T^k; \mathbb{Q})$.

We note that the Theorem also holds for odd-dimensional manifolds. The proof is obtained by considering $M \times S^1$.

In particular, for a generator u of $H^k(T^k; \mathbb{Q})$, we obtain

$$\hat{A}(u)(M) = \langle \hat{A}(M)f^*(u), [M] \rangle = \langle \hat{A}(M), f^*(u) \cap [M] \rangle$$

$$= \langle \hat{A}(N), [N] \rangle = \hat{A}(N),$$

Received by the editors May 20, 1986.

1980 Mathematics Subject Classification (1985 Revision). Primary 57R20, 53C20.

Key words and phrases. KO-characteristic number, positive scalar curvature.
where N is a submanifold of M whose Poincaré dual is $f^*(u)$. Thus, in this case the higher \hat{A}-genus $\hat{A}(u)(M)$ can be regarded as a \hat{A}-genus of N and hence the Theorem says that the \hat{A}-genus $\hat{A}(N)$ must vanish.

In this paper we prove a similar result for the KO-characteristic number α.

Theorem. Let M be an $(8k + 2)$-dimensional closed spin manifold and N an orientable hypersurface of M which represents a nonzero homology class of $H_{8k+1}(M; \mathbb{Z})$. We fix the spin structure on M and equip N with the induced spin structure. Then, if M admits a Riemannian metric with positive scalar curvature, the KO-characteristic number $\alpha(N)$ vanishes.

The author would like to express sincere gratitude to Professor Akio Hattori for his help.

2. Gysin homomorphisms and KO-characteristic numbers. We begin with the definition of KO-characteristic numbers. To do this we shall review Gysin homomorphisms for KO^*-theory.

Let X be an $(n + i)$-dimensional closed manifold and let M be an n-dimensional submanifold with an embedding $f : M \subset X$. We assume that the normal bundle ν of M is a spin vector bundle. Then, $\nu \times \mathbb{R}^{8k-i}$ is also a spin vector bundle of rank $8k$ and hence $KO^*(M)$ is isomorphic to $KO^{*+8k}(\nu \times \mathbb{R}^{8k-i})$ by the Thom isomorphism. Furthermore a natural inclusion $\nu \times \mathbb{R}^{8k-i} \subset X \times \mathbb{R}^{8k-i}$ induces a homomorphism from $KO^*(\nu \times \mathbb{R}^{8k-i})$ to $KO^*(X \times \mathbb{R}^{8k-i})$ and $KO^*(X \times \mathbb{R}^{8k-i})$ is isomorphic to $KO^*_{-8k+i}(X)$ by the suspension isomorphism. Composing these homomorphisms, we obtain

$$KO^*(M) \to KO^{*+8k}(\nu \times \mathbb{R}^{8k-i}) \to KO^{*+8k}(X \times \mathbb{R}^{8k-i}) \to KO^{*+i}(X),$$

which is called a Gysin homomorphism induced by f and denoted by $f_!$.

Here, we set the Euclidean space \mathbb{R}^{8m} as X and consider an embedding $M \subset \mathbb{R}^{8m}$. Then a spin structure on M makes ν into a spin vector bundle and under the identification of $KO^*(\mathbb{R}^{8m})$ with $KO^*_{-8m}(\text{point})$, a KO-characteristic number $\alpha(M)$ is defined by

$$\alpha(M) = f_!(1) \in KO^{-n}(\text{point}),$$

where $1 \in KO^0(M)$. We note that the definition depends only on the spin structure on M and is independent of the choice of embeddings by virtue of the Bott periodicity theorem.

Since $KO^{-8m-1}(\text{point})$ and $KO^{-8m-2}(\text{point})$ are isomorphic to \mathbb{Z}_2, $KO^{-8m}(\text{point})$ and $KO^{-8m-4}(\text{point})$ are isomorphic to \mathbb{Z}, and the others are zero, we sometimes consider that $\alpha(M)$ takes a value in \mathbb{Z}_2 or \mathbb{Z}. In particular $\alpha(M)$ is equal to $\hat{A}(M)$ for $n = 8m$.

3. Vanishing theorem and index theorem. In this section we quote two theorems we need for the proof.

Vanishing Theorem [3]. Let M be a closed spin manifold and E a real vector bundle over M of rank m. We denote by D^E the Dirac operator with coefficient bundle E, namely,

$$D^E : \Gamma(S \otimes E) \to \Gamma(S \otimes E),$$
where S denotes the spinor bundle over M. Then, if E admits a flat $O(m)$-connection and M admits a Riemannian metric with positive scalar curvature, the operator D^E has trivial kernel.

Atiyah-Singer Index Theorem [1]. Let M be an n-dimensional closed spin manifold with $n = 8k + 2$ or $8k + 1$ and let E be a real vector bundle over M. Then the following statements hold.

1. The kernel of D^E has the structure of a finite-dimensional complex vector space for $n = 8k + 2$ and has the structure of a finite-dimensional real vector space for $n = 8k + 1$.
2. The image of E by the Gysin homomorphism $f_!$ in §2 is given by

$$f_!(E) = \dim_{\mathbb{C}} \ker D^E \mod 2 \quad \text{for } n = 8k + 2,$$

$$f_!(E) = \dim_{\mathbb{R}} \ker D^E \mod 2 \quad \text{for } n = 8k + 1,$$

where $f_!(E)$ is considered as taking a value in \mathbb{Z}_2.

We note that Hitchin's result [3] quoted earlier is obtained by combining these theorems.

4. Proof of the Theorem. Let M and N be such manifolds as described in the statement of the Theorem. Then, we may assume that there is a smooth map $\varphi: M \to S^1$ such that φ is transverse with S^1 at some point $x_0 \in S^1$ and the inverse image $\varphi^{-1}(x_0)$ is N. Denote by η the canonical generator of $KO^{-1}(\text{point})$. Then the following diagram commutes by virtue of naturality of the Thom isomorphism:

$$\begin{array}{ccc}
KO^*(x_0) & \xrightarrow{(\varphi|_M)^*} & KO^*(N) \\
i_! & \downarrow & \downarrow j_! \\
KO^{*+1}(S^1) & \xrightarrow{\varphi^*} & KO^{*+1}(M) \\
\eta_! & \downarrow & \eta_! \\
KO^*(S^1) & \xrightarrow{\varphi^*} & KO^*(M)
\end{array}$$

where $i: x_0 \subset S^1$ and $j: N \subset M$. In particular we obtain

$$\eta \cdot (j_!(1)) = (\varphi^* \eta \cdot i_!(1)).$$

Now let u be the generator of $H^1(S^1: \mathbb{Z}_2)$. Since the isomorphism classes of real line bundles are classified by the 1st Stiefel-Whitney class w_1, there is a real line bundle L over S^1 such that $w_1(L) = u$. Then it follows that

$$\eta \cdot i_!(1) = [L] - 1 \quad \text{in } KO^0(S^1).$$

Thus we obtain

$$\eta \cdot \alpha(N) = \eta \cdot (f \circ j_!(1)) = \eta \cdot f_!(j_!(1)) = f_!(\eta \cdot j_!(1)) = f_!(\varphi^*(\eta \cdot i_!(1))) = f_!(\varphi^*([L] - 1)) = f_!(\varphi^*[L]) - f_!(1),$$

where f is an embedding of M into \mathbb{R}^{8m} as in §2. Note that $\varphi^*(L)$ admits a flat $O(1)$-connection. Thus, if M admits a Riemannian metric with positive scalar curvature.
curvature, it follows that $\ker D\varphi^*(L) = 0$ and $\ker D = 0$ from the vanishing theorem. Hence, by the Atiyah-Singer index theorem we obtain that $f_1(\varphi^*[L]) = 0$ and $f_1(1) = 0$. It is known that the multiplication by η from $KO^{-n+1}(\text{point})$ to $KO^{-n}(\text{point})$ is an isomorphism for $n = 8k + 2$. Thus the Theorem follows from the fact that $\eta \cdot \alpha(N) = 0$.

REFERENCES

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, UNIVERSITY OF TOKYO, HONGO, TOKYO 113, JAPAN

Current address: Department of Mathematics, Brown University, Providence, Rhode Island 02912