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THE NONCOMPACT HYPERBOLIC 3-MANIFOLD

OF MINIMAL VOLUME

COLIN C. ADAMS

ABSTRACT. We utilize maximal cusp volumes in order to prove that the

Gieseking manifold is the unique complete noncompact hyperbolic 3-manifold

of minimal hyperbolic volume.

1. Introduction. By a hyperbolic 3-manifold, we mean a complete Rieman-

nian 3-manifold of constant sectional curvature — 1. Each such manifold M can

be realized as H3/T, where S is a discrete torison-free subgroup of the isometries

of H3. We are allowing orientation-reversing isometries and hence nonorientable

3-manifolds. All of the hyperbolic 3-manifolds that are considered here have finite

volume.

As much of the work that has been done on hyperbolic 3-manifolds has been

focused on the orientable case, we will make some remarks about how the basic

theorems of hyperbolic 3-manifold theory extend to nonorientable manifolds. As

a consequence of Mostow's Rigidity Theorem, we know that hyperbolic volume

is a topological invariant for finite volume hyperbolic 3-manifolds. Jorgensen and

Thurston [10] proved that the set of volumes of orientable hyperbolic 3-manifolds is

well ordered and of order type ww. Since any nonorientable hyperbolic 3-manifold

is double-covered by an orientable hyperbolic 3-manifold, we know that the set of

volumes of all hyperbolic 3-manifolds is also well ordered. In particular, there is a

hyperbolic 3-manifold of minimum volume among all hyperbolic 3-manifolds and

a noncompact hyperbolic 3-manifold of minimum volume among all noncompact

hyperbolic 3-manifolds.

In Chapter 5 of [10], Thurston discusses the fact that a finite volume noncom-

pact orientable hyperbolic 3-manifold can be cut open along two-sided tori, leaving

a compact component and a finite set of cusps, each homeomorphic to T2 x [0,1).

Again, because a nonorientable hyperbolic 3-manifold is double-covered by an ori-

entable hyperbolic 3-manifold, a finite volume noncompact nonorientable hyper-

bolic 3-manifold can be cut open along two-sided tori and two-sided Klein bottles,

leaving a compact component and a finite set of cusps, each homeomorphic to either

T2 x [0,1) or K2 x [0,1).

There are many Dehn surgeries that can be performed on an orientable cusp

T2 x [0,1), corresponding to various choices for surgery coefficients, and Thurston

proves in Chapter 6 of [10] that all of the resultant manifolds which are hyperbolic

will have smaller volume than the original manifold.  There is, however, only one
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way to glue a solid Klein bottle to a nonorientable cusp K2 x [0,1) and the resulting

manifold need not be hyperbolic. Hence we do not know that for a given n-cusp

nonorientable hyperbolic 3-manifold, there exists an (n — l)-cusp nonorientable

hyperbolic 3-manifold of smaller volume as is true in the orientable case.

Utilizing an examination of maximal cusp volumes in a noncompact hyperbolic

3-manifold in conjunction with the work of R. Meyerhoff [6], we prove that the

Gieseking manifold, a nonorientable 3-manifold which will be defined in the next

section, is the unique noncompact hyperbolic 3-manifold of minimal volume and

consequently that the minimum volume of a noncompact hyperbolic 3-manifold is

exactly the volume of an ideal regular tetrahedron in H3, that is v = 1.01494_

We note that although R. Meyerhoff [7] has already discovered the minimal vol-

ume noncompact hyperbolic 3-orbifold, questions that remain to be solved include

determining the minimum volume for the set of all hyperbolic 3-manifolds, the

set of all hyperbolic 3-orbifolds and the set of noncompact orientable hyperbolic

3-manifolds (see [6] for the current status on these questions). Minimum volumes

for n-cusp hyperbolic 3-manifolds for given n are investigated in [1].

In the following, we will always utilize the upper half-space for hyperbolic 3-

space.

I would like to thank Robert Meyerhoff and Jeffrey Weeks for numerous helpful

discussions and the referee for several useful suggestions.

2. The Gieseking manifold. This 3-manifold was first described by Giesek-

ing [5] in 1912. Let T be an ideal regular tetrahedron in ii3, that is, a tetrahedron

will all four vertices on the sphere at infinity and all dihedral angles 7r/3. Then, as

in Figure 1, identify faces A to A' and B to B' so that the orientations on the edges

match up correctly. Such identifications can be performed by hyperbolic isome-

tries, each orientation-reversing. These isometries generate a discrete torsion-free

subgroup of the group of all isometries of H3. After the identifications, all six edges

will be identified and the sum of the angles about this one edge will now add up to

2tt.

The resulting manifold is a noncompact hyperbolic 3-manifold, with volume

v = 1.01494... (see [9] for the calculation of the volume of an ideal regular tetra-

hedron). We can draw the link diagram (defined in Chapter 4 of [10]), two possi-

bilities for which appear in Figure 2. Note that the Gieseking manifold is double

covered by the figure-eight knot complement. Thurston conjectured in [10] that

the figure-eight knot complement is one of two noncompact orientable hyperbolic 3-

manifolds of minimal volume. This conjecture, the truth of which would imply that

the Gieseking manifold is a noncompact hyperbolic 3-manifold of minimal volume,

motivated our interest in this question.

3. Maximal cusp volumes. Let M be a noncompact finite volume hyperbolic

3-manifold which has been decomposed into a compact component and a finite set

of cusps, each homeomorphic to either T2 x [0,1) or K2 x [0,1). If we lift any such

cusp to H3, we obtain an infinite set of disjoint horoballs.

Examining first the situation when M has exactly one cusp, lift that cusp to

the corresponding set of disjoint horoballs, each of which is the image of any other

by some group element. Expand the horoballs equivariantly until two first become

tangent. We call the projection of thses expanded horoballs back to M the maximal
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Figure 2

cusp of M. We can assume one such horoball H is centered about {oo}. Let h be

the Euclidean height of the boundary horosphere of H above the x-y plane. Let P

be the subgroup of hyperbolic isometries in -k\ (M) which fix {oo}. Then the volume

of this maximal cusp, denoted vc(M), is simply the volume of a fundamental region

in H for the action on H by P. This is given by the Euclidean area of the link

diagram divided by 2h2.
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In the case that M has more than one cusp, we define a maximal volume for each

cusp C exactly as above. Note that the maximal cusps in a manifold can intersect.

Further details on computing maximal cusp volumes will appear in [2].

We first prove a theorem that has been known for some time and appears ex-

plicitly in the orientable case in [8].

THEOREM 1. vc(M) > \/3/4 for any single cusp C in a finite volume hyper-

bolic 3-manifold M.

PROOF. Let C be a maximal cusp in M which lifts to an infinite set of horoballs

with disjoint interiors in H3. We may assume one such horoball H\ is centered

about {oo} and a second such horoball Hi is tangent to H\, centered about {0},

and has Euclidean diameter h.

Let P again be the subgroup of 7Ti(M) that fixes {00}. Since P is either the

fundamental group of a torus or a Klein bottle, there exists a fundamental domain

D for the action of P on the x-y plane which is a parallelogram such that one of

its vertices occurs at {0} and such that all four of its vertices are identified by

P. Each of the vertices of D is then the center of a horoball which covers C and

has Euclidean diameter h. Since these horoballs must have disjoint interiors, each

vertex must be a distance h from each of the other three vertices. Hence we can

center a disk of radius h/2 about each vertex of D such that the interiors of any

two of the disks are disjoint. Then, since the images of D under the action of P tile

the plane, the images of these disks under the action of P will form a disk-packing

in the plane. As the densest disk-packing in the plane is the hexagonal packing,

the ratio of the area of a disk to the area of D is at most 7r/2\/3. Hence the area

of D is at least \¡3h2 ¡2 and vc{M) > v/3/4.    D

This extimate can be improved by a factor of two.

THEOREM 2. vc{M) > \/3/2 for any single cusp C in a finite volume hyper-

bolic 3-manifold M.

PROOF. Let C,H\,Hi,P and D be as described in the previous proof. Then

because Hi and Hi both cover C, there must exist a group element g sending Hi

to H\ and hence sending 0 to 00.

Suppose 3(00) = p(0) for some p in P. Then p~1g(oo) = 0 and p~1g(0) — 00.

Hence p~l g sends the geodesic running from 0 to 00 back to itself but reverses its

orientation. Thus p~lg fixes a point in H3, contradicting the fact it is a nontrivial

covering translation.

Hence 0(00) must be some point y not contained in P(0). Since Hi is tangent to

Hi, g{H{) must be tangent to g{Hi) = H\. Thus g{H\) is a horoball of the same

Euclidean radius as Hi but not contained in the set of horoballs P{Hi). Therefore

D must contain a point, for convenience call it y, such that every pair of points in

jP(0) U P(y) are at least a distance h apart.

Centering disks of radius h/2 about each of the vertices of D and about y and

then letting P act on these will again result in a disk-packing of the plane. However,

now D must contain the equivalent of two disks. Hence, as in the previous proof,

the area of D is at least \/3h2 and vc(M) > \/3/2.    G

COROLLARY 3. The Gieseking manifold has the minimum volume among all

noncompact hyperbolic 3-manifolds.
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PROOF. Let M be any finite volume noncompact hyperbolic 3-manifold, with

any positive number of cusps. Meyerhoff [6] utilized results on horoball-packings

by K. Boroczky [4] in order to prove that for a 1-cusp hyperbolic 3-manifold M,

the total hyperbolic volume of M, denote vol(M), satisfies the inequality vol(M) >

vc{M)/(\/3/2v). This result holds true if C is any single cusp in M. Theorem

2 then implies that M has volume greater than or equal to v = 1.01494... and

the Gieseking manifold realizes this lower bound. Note that if vol(M) = v then

vc{M) = v/3/2 for every cusp in M.    D

4. Uniqueness.

THEOREM 4. If M is a noncompact hyperbolic 3-manifold of minimal volume,

then M is the Gieseking manifold.

PROOF. M must have volume 1.01494 ... and each cusp of M must have maxi-

mal volume v/3/2. Let C be a maximal cusp in M and let H be a horoball centered

about {oo} covering C. Let P, £), and y be as in the previous proof. In order that

the maximal disk-packing density in the plane is attained, it must be the case that

the disks of radius h/2 centered about P(0) U P{y) are in a hexagonal packing.

Hence, we have a tiling of the plane by equilateral triangles of edge length h such

that the vertices of the triangles are exactly P(0) U P(y)-

Let {¿i,..., tn} be the finite subset of these triangles such that í¿ n D ^ 0 for

i— 1,..., n. Let D' = U™=i U- Then the images of D' under P cover the entire x-y

plane. For each i, let Tt be the ideal regular tetrahedron which has for its vertices

the three vertices of í¿ and {oo}.

Let R = UiLi^- We claim that the images of R under ni(M) will cover all

of H3. It is clear that the images of R under 7Ti(M) will cover all of the maximal

horoballs corresponding to C since the images of R clearly cover H and all of the

maximal horoballs for C are identified by tti(M). It suffices to show that the

bottom face /¿ on each of the tetrahedra T, is identified to some other face on

one of the tetrahedra by some element of 7Ti(M), as we then have a tiling of H3

by ideal regular tetrahedra. However, since the three vertices corresponding to ft

are centers for three pairwise tangential horoballs all corresponding to C and there

exists a group element p sending a particular one of these three vertices to {oo}, p

must send the remaining two vertices to the centers of a pair of tangential horoballs

of Euclidean diameter h corresponding to C. Hence p sends /¿ to a face of p{Tj)

for some p in P and some j. Thus p~1(i sends /, to a face of Tj, as desired.

It is also true that no interior point of any one tetrahedron T¿ is identified to

any other point of T¿ by an element of -K\ (M) since any such map must permute

the maximal tangential horoballs corresponding to C and hence be a permutation

on the vertices of T¿. But such an isometry would fix the central point of 71,,

contradicting the fact it must be a covering translation.

Since vol(M) = vol(Ti) and ir\{M) must leave the set of centers of horoballs

invariant, the other n — 1 tetrahedra must all be identified to T\, implying T\ is

a fundamental region for -k\{M). Hence our fundamental region is a single ideal

regular tetrahedron with pairs of faces identified. It is simple to check that the only

such identifications which yield a 3-manifold produce the Gieseking manifold.    D
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