INVARIANCE UNDER OPERATION A

JOHN C. MORGAN II AND KENNETH SCHILLING

ABSTRACT. The invariance under operation A of the families of sets having the classical Baire property, of Lebesgue measurable sets, and of Marczewski sets is established in a unified manner.

Marczewski has formulated a general theorem which simultaneously implies the invariance under the set-theoretical operation A of the family of Lebesgue measurable sets and the family of sets having the classical Baire property (see [18, 19] and, for related matters, [5–8, 12–15, 18, 22]). In [21] Marczewski further established the invariance under operation A of a new family of sets, which we call Marczewski sets, but utilized a different method of proof. By a suitable modification of Marczewski's general argument we unify these three results here and establish the invariance under operation A for any category base.

For the relevant definitions and properties of category bases used below see [11]. For additional classifications of sets invariant under operation A see [10].

THEOREM. The family of sets having the Baire property with respect to any category base is invariant under operation A.

PROOF. We denote by Z the set of all infinite sequences $\nu = (\nu_1, \nu_2, \ldots)$ of natural numbers and by N^k the set of all k-tuples $(\nu_1, \nu_2, \ldots, \nu_k)$ whose terms are elements of the set N of natural numbers.

Let

$$S = \bigcup_{\nu \in Z} \bigcap_{k \geq 1} S_{\nu_1 \cdots \nu_k}$$

be the nucleus of a determinant system of sets $S_{\nu_1 \cdots \nu_k}$ which have the Baire property. The family of sets which have the Baire property being closed under finite intersections, we may assume, without loss of generality, that for each sequence $\nu = (\nu_1, \nu_2, \ldots) \in Z$ and each $k \in N$ we have

$$S_{\nu_1 \cdots \nu_{k+1}} \subset S_{\nu_1 \cdots \nu_k}.$$

(Otherwise, setting

$$S'_{\nu_1 \cdots \nu_k} = \bigcap_{p=1}^{k} S_{\nu_1 \cdots \nu_p}$$

for all $\nu \in Z$ and all $k \in N$, we obtain a determinant system of sets $S'_{\nu_1 \cdots \nu_k}$ having the Baire property which satisfies this inclusion and whose nucleus is also S.)

Received by the editors May 15, 1986.

1980 Mathematics Subject Classification (1985 Revision). Primary 28A05, 54A05; Secondary 54E52, 54H05.

Key words and phrases. Category base, Baire property, operation A.

©1987 American Mathematical Society

0002-9939/87 $1.00 + .25$ per page

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
In order to show that S has the Baire property it suffices to show that if A is any region in which S is abundant everywhere, then $A - S$ is a meager set. Assume therefore that A is such a region.

Suppose $k \in \mathbb{N}$ and $\alpha = (\nu_1, \ldots, \nu_k) \in \mathbb{N}^k$. Define

$$T_\alpha = \bigcup_{\mu \in \mathbb{Z}} \bigcap_{j=1}^{\infty} S_{\\nu_1 \ldots \nu_k, \mu_1 \ldots \mu_j}.$$

We proceed to define a particular maximal family (possibly empty) \mathcal{M}_α of disjoint subregions of A such that T_α is abundant everywhere in each region in \mathcal{M}_α.

Let \mathcal{N}_α consist of all those regions in which T_α is either meager or abundant everywhere. Then $(\bigcup \mathcal{N}_\alpha, \mathcal{N}_\alpha)$ is a category base. Applying Lemma 2 of [11], we define \mathcal{M}_α^* to be a subfamily of \mathcal{N}_α, consisting of disjoint regions, having the property that for every region $N \in \mathcal{N}_\alpha$ there is a region $M \in \mathcal{M}_\alpha^*$ such that $N \cap M$ contains a region in \mathcal{N}_α. Set

$$\mathcal{M}_\alpha = \{ M \in \mathcal{M}_\alpha^*: T_\alpha \text{ is abundant everywhere in } M \}.$$

Now defining $R_\alpha = S_\alpha \cap (\bigcup \mathcal{M}_\alpha)$, we have $R_\alpha \subset S_\alpha$. Set $Q = A - \bigcup_{m=1}^{\infty} R_m$ and, for each $k \in \mathbb{N}$ and $(\nu_1, \ldots, \nu_k) \in \mathbb{N}^k$, set

$$Q_{\nu_1 \ldots \nu_k} = R_{\nu_1 \ldots \nu_k} - \bigcup_{m=1}^{\infty} R_{\nu_1 \ldots \nu_k m}.$$

We then have

$$A - S = A - \bigcup_{\nu \in \mathbb{Z}} \bigcap_{k=1}^{\infty} S_{\nu_1 \ldots \nu_k} \subset A - \bigcup_{\nu \in \mathbb{Z}} \bigcap_{k=1}^{\infty} R_{\nu_1 \ldots \nu_k}$$

$$\subset \left(A - \bigcup_{m=1}^{\infty} R_m \right) \cup \left[\bigcup_{\nu \in \mathbb{Z}} \bigcap_{k=1}^{\infty} \left(R_{\nu_1 \ldots \nu_k} - \bigcup_{m=1}^{\infty} R_{\nu_1 \ldots \nu_k m} \right) \right]$$

$$= Q \cup \left(\bigcup_{k=1}^{\infty} \bigcup_{\alpha} Q_\alpha \right),$$

where α varies over all sequences $\alpha = (\nu_1, \ldots, \nu_k) \in \mathbb{N}^k$ for each $k \in \mathbb{N}$. Now, the totality of sets Q_α is countable. Hence, in order to show that $A - S$ is a meager set, we have only to show Q and all the sets Q_α are meager sets.

Suppose Q is not meager. Being a subset of A, the set Q is abundant everywhere in a region $B \subset A$. From the inclusion $S \subset \bigcup_{n=1}^{\infty} T_n$ and the fact that S is abundant in B, it follows that there is an index n_1 such that T_{n_1} is abundant in B. There is then a subregion N of B in which T_{n_1} is abundant everywhere. According to the definition of the family $\mathcal{M}_{n_1}^*$, there exists a region $M \in \mathcal{M}_{n_1}^*$ such that $N \cap M$ contains a region C in which T_{n_1} is abundant everywhere. As $T_{n_1} \subset S_{n_1}$, the set S_{n_1} is also abundant everywhere in C. Now, we have

$$S_{n_1} \cap C \subset R_{n_1} \subset \bigcup_{m=1}^{\infty} R_m,$$

which implies

$$Q \subset X - \bigcup_{m=1}^{\infty} R_m \subset X - (S_{n_1} \cap C).$$
Hence, \(Q \) being abundant everywhere in \(C \), the set \(X = (S_{n_1} \cap C) \) is abundant everywhere in \(C \). Because \(S_{n_1} \) is also abundant everywhere in \(C \) and both \(S_{n_1} \) and \(X = (S_{n_1} \cap C) \) have the Baire property, the set
\[
S_{n_1} \cap [X - (S_{n_1} \cap C)] = S_{n_1} - C
\]
is abundant in \(C \). But this is impossible! We conclude \(Q \) must be a meager set.

Suppose \(k \in \mathbb{N} \) and \(\alpha = (\nu_1, \ldots, \nu_k) \in \mathbb{N}^k \). To show that \(Q_\alpha \) is a meager set, we assume to the contrary that \(Q_\alpha \) is abundant. Then \(Q_\alpha \) is abundant everywhere is some region \(D \).

The set \(Q_\alpha \) is abundant everywhere is some region \(B \in \mathcal{N}_\alpha \). For, if \(T_\alpha \) is meager in \(D \) then \(D \in \mathcal{N}_\alpha \), so we may take \(B = D \). Whereas, if \(T_\alpha \) is abundant in \(D \) then \(T_\alpha \) is abundant everywhere is some region \(B \subset D \), so \(B \in \mathcal{N}_\alpha \) and \(Q_\alpha \) is abundant everywhere in \(B \).

The set \(T_\alpha \) must also be abundant everywhere in \(B \). For, suppose \(T_\alpha \) is meager in some region \(B' \subset B \). Then there exists a region \(M^* \in \mathcal{M}_\alpha^* \) and a region \(B'' \in \mathcal{N}_\alpha \) such that \(B'' \subset B' \cap M^* \). The set \(T_\alpha \) cannot be abundant everywhere in \(M^* \) and, consequently, \(M^* \notin \mathcal{M}_\alpha \). The regions in \(\mathcal{M}_\alpha^* \) being disjoint, we have \(M^* \cap (\bigcup \mathcal{M}_\alpha) = \emptyset \). Since \(Q_\alpha \subset \bigcup \mathcal{M}_\alpha \), we have \(B'' \cap Q_\alpha = \emptyset \). This implies that \(Q_\alpha \) is not abundant everywhere in \(B \), a contradiction!

Having thus established that \(T_\alpha \) is abundant everywhere in \(B \), we can replace \(Q \) with \(Q_\alpha \), \(S \) with \(T_\alpha \), \(T_n \) with \(T_\nu \), \(n_1 \) with \((\nu_1, \ldots, \nu_k, n_1) \), and \(R_m \) with \(R_{\nu_1 \ldots \nu_k m} \) in the above argument, to obtain the conclusion that \(Q_\alpha \) must be a meager set.

COROLLARY (cf. [9]). There is no category base consisting of sets of real numbers for which the sets with the Baire property coincide with the linear Borel sets.

REMARK. Concerning more general operations which preserve the classical Baire property and measurability see [1–4, 16, 17].

REFERENCES

8. —, *Sur un ensemble non mesurable \(B \)*, J. Math. (9) 2 (1923), 53–72.