Pointwise convergence approximate identities of dilated radially decreasing kernels
HTML articles powered by AMS MathViewer
- by R. A. Kerman
- Proc. Amer. Math. Soc. 101 (1987), 41-44
- DOI: https://doi.org/10.1090/S0002-9939-1987-0897067-7
- PDF | Request permission
Abstract:
Let $\phi$ be integrable on ${R^n}$ with $\int _{{R^n}} {\phi (y)dy = 1}$. It is shown that \[ {\lim _{\varepsilon \to 0 + }}(\phi _F^*f)(x) = {\lim _{\varepsilon \to 0 + }}{\varepsilon ^{ - n}}\int _{{R^n}} {(\frac {{x - y}} {\varepsilon })f(y)dy = f(x)} \] a.e. on ${R^n}$, whenever the least radially decreasing majorant of $\phi$, defined by $\psi (x) = {\sup _{|y| \geqslant |x|}}|\phi (y)|$, is such that $|x{|^n}\psi (x) = |x{|^n}\psi (|x|)$ is nonincreasing in $|x|$ when $|x|$ is large and $(\psi _{{\varepsilon _0}}^*|f|)({x_0}) < \infty$ for some ${x_0} \in {R^n}$ and ${\varepsilon _0} > 0$.References
- A. P. Calderon and A. Zygmund, On the existence of certain singular integrals, Acta Math. 88 (1952), 85–139. MR 52553, DOI 10.1007/BF02392130 G. H. Hardy, Further researches in the theory of divergent series and integrals, Proc. Cambridge Philos. Soc. 21 (1908), 1-48. —, Fourier’s double integral and the theory of divergent integrals, Proc. Cambridge Philos. Soc. 21 (1911), 427-451. —, Notes on some points in the integral calculus (XLII): On Weierstrass’s singular integral and on a theorem of Lerch, Messenger Math. 46 (1917), 43-48.
- I. I. Hirschman and D. V. Widder, The convolution transform, Princeton University Press, Princeton, N. J., 1955. MR 0073746 E. C. Titchmarsh, Theory of Fourier integrals, 2nd ed., Oxford Univ. Press, 1962.
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 101 (1987), 41-44
- MSC: Primary 42B99; Secondary 44A35
- DOI: https://doi.org/10.1090/S0002-9939-1987-0897067-7
- MathSciNet review: 897067