REGULARIZING PROPERTIES OF NONLINEAR SEMIGROUPS

SEMION GUTMAN

ABSTRACT. It is known that some classes of \(m \)-accretive operators \(A \) generate Lipschitz continuous semigroups of contractions; that is \(\| S(t + h)x - S(t)x \| \leq L(\| x \|)h/t, 0 \leq t \leq t + h \leq T, x \in D(A) \). If the underlying Banach spaces \(X \) and \(X^* \) are uniformly convex and an \(m \)-accretive operator \(B \) is bounded, we prove, in particular, that the semigroup generated by \(A + B \) is Hölder continuous. The proof is based on a result on the structure of accretive operators obtained via the Kuratowski-Ryll-Nardzewski Selection Theorem. Also, we consider some applications of these results to the existence of solutions of \(u' + Au + Bu = Cu, u(0) = u_0 \).

Let \(X \) be a Banach space with the norm \(\| \cdot \| \). The duality mapping \(J \) from \(X \) into the class of subsets of its dual \(X^* \) is defined by \(J(x) = \{ z \in X^*: z(x) = \| x \|^2 = \| z \|^2 \} \) for each \(x \in X \). For each pair \(x, y \in X \) we define

\[
\langle y, x \rangle_s = \sup \{ z(y) : z \in J(x) \}.
\]

A (multivalued) operator \(A \subset X \times X \) is called accretive if \(\langle y_1 - y_2, x_1 - x_2 \rangle_s \geq 0 \) for any \((x_1, y_1), (x_2, y_2) \in A \). If the range \(R(I + \lambda A) = X \) for some (equivalently for all) \(\lambda > 0 \), then the operator \(A \) is called \(m \)-accretive. (General works on this subject are, e.g., [1, 5, 7].)

Crandall's and Liggett's theorem [5] states that any \(m \)-accretive operator \(A \) generates a (nonlinear) semigroup of contractions \(S(t): D(A) \rightarrow D(A), t \geq 0, \) by \(S(t)x = \lim_{n \rightarrow \infty} [(I + t/n)A]^{-n}x, x \in D(A) \). The function \(u(t) = S(t)u_0 \) can be considered as a generalized solution of the initial value problem

\[
\begin{aligned}
u'(t) + Au(t) &\geq 0, \quad t \geq 0, \\
u(0) &= u_0 \in D(A)
\end{aligned}
\]

(see, e.g., [1, §3.1; 5]).

Generally, little can be said on the regularity of the function \(u(t) \). In particular, \(u \) can be nondifferentiable, or, even, not Lipschitz continuous. However, for some classes of \(m \)-accretive operators the generated semigroup \(S(t) \) behaves better. For example, if \(S(t) \) is generated by the subdifferential of a convex, lower-semicontinuous function \(\phi(x) \) on a Hilbert space \(X \), then \(\| S(t + h)x - S(t)x \| \leq L(\| x \|)h/t, 0 \leq t \leq t + h \leq T, x \in D(A) \); where \(T > 0 \) and \(L(r) \) is a nondecreasing function [3; 1, §4.2].

Received by the editors March 28, 1985 and, in revised form, June 4, 1986.
Key words and phrases. Nonlinear semigroup, regularity, \(m \)-accretive, evolution equation, bounded perturbation.
The semigroups generated by homogeneous operators have similar behavior (see [4, Theorem 1]).

The main purpose of this note is to study such regularizing properties for the solutions of the perturbed initial value problem

$$\begin{cases} u'(t) + Au(t) + Bu(t) \equiv 0, \\ u(0) = u_0, \quad 0 \leq t \leq T, \end{cases}$$

where A is an m-accretive operator and $B: X \to 2^X$ is a bounded (multivalued) operator. (B is bounded if $\sup\{\|y\|: y \in Bx, \|x\| \leq r\}$ is finite for any $r > 0$.) To define a solution of (2) we recall [2; 1, 3.2] that for any integrable function $f \in L^1(0, T; X)$, $T > 0$, there exists a unique integral solution of the initial value problem

$$\begin{cases} u'(t) + Au(t) \equiv f(t), \\ u(0) = u_0. \end{cases}$$

That is a continuous function $u: [0, T] \to X$ such that

$$\frac{1}{2}\|u(t) - x\|^2 \leq \frac{1}{2}\|u(s) - x\|^2 + \int_s^t \langle f(\tau) - y, u(\tau) - x \rangle, d\tau$$

for any $0 \leq s \leq t \leq T$ and $[x, y] \in A$. A continuous function u is called the strong solution of (3) if u is continuous, differentiable a.e. on $[0, T]$, and (3) is satisfied a.e. on $[0, T]$ (we use only the Lebesgue measure on $[0, T]$).

We define the operator $H: L^1(0, T; X) \to C([0, T]; X)$ by $Hf = u$, where u is the unique integral solution of (3). It is known [7, Remark 8.4] that

$$\|Hf(t) - Hg(t)\| \leq \|Hf(s) - Hg(s)\| + \int_s^t \|f(\tau) - g(\tau)\| d\tau$$

for $0 \leq s \leq t \leq T$.

Definition 1. A continuous function $u: [0, T] \to D(A)$ is called a solution of (2) if there exists a measurable function $f \in L^1(0, T; X)$ such that $f(t) \in -Bu(t)$ for a.e. $t \in [0, T]$ and $Hf = u$.

Theorem. Let X be a Banach space, $T > 0$, A be an m-accretive operator which generates a continuous semigroup of contractions $S(t)$, $t \geq 0$. Suppose that a (multivalued) operator $B: X \to 2^X$ is bounded and $D(B) \subset D(A)$. If there exists $\gamma > 0$, $0 < \mu \leq 1$, and a nondecreasing function $L: [0, \infty) \to [0, \infty)$ such that $\|S(t + h)x - S(t)x\| \leq t^{-\gamma}L(\|x\|)h^\mu$ for any $x \in D(A)$, $0 \leq t \leq t + h \leq T$, then any solution of (2) satisfies

$$\|u(t + h) - u(t)\| \leq C(\mu, \gamma, T, M, N)h^{\mu/(\gamma + 1)}, \quad 0 \leq t \leq t + h \leq T,$$

where $N = \max\{\|u(\tau)\|, 0 \leq \tau \leq T\}$ and $M = \sup\{\|y\|: y \in Bx, \|x\| \leq N\}$.

This Theorem follows immediately from the above definition and the following lemma.

Lemma 1. Suppose that $f \in L^1(0, T; X)$ and $\sup_{0 \leq \tau \leq T}\|f(\tau)\| \leq M$. If the operator A satisfies the conditions of the Theorem then the integral solution $u(t)$ of (3) satisfies

$$\|u(t + h) - u(t)\| \leq C(\mu, \gamma, T, M, N)h^{\mu/(\gamma + 1)}$$

where the constants are as in the Theorem.
Proof. Fix \(t > 0 \). For any \(0 \leq h \leq T - t \) and \(0 \leq \sigma < t \) we have (by (5))

\[
\|u(t + h) - u(t)\| \leq \|u(t + h) - S(t - \sigma + h)u(\sigma)\| + \|S(t - \sigma + h)u(\sigma) - S(t - \sigma)u(\sigma)\|
\]

\[
\leq M(t - \sigma + h) + (t - \sigma)L\left(\|u(\sigma)\|\right) + M(t - \sigma).
\]

Thus \(\|u(t + h) - u(t)\| \leq \min_{0 \leq \sigma < t}[2M + 2M\sigma + L(N)(t - \sigma)^{-\gamma}h^\mu]. \)

Therefore

\[
\|u(t + h) - u(t)\| \leq h^{\mu/(\gamma + 1)}\left[2Mh^{1-\mu/(\gamma + 1)} + 2M\right] + L(N)^{(1/(\gamma + 1))(\gamma + 1)}\gamma^{-\gamma/(\gamma + 1)}
\]

\[
\leq h^{\mu/(\gamma + 1)}C_1(\mu, \gamma, T, M, N)
\]

for \(0 < h < ((2M/\gamma L(N))t)\gamma+1)^{1/\mu} \) and

\[
\|u(t + h) - u(t)\| \leq t^{-\gamma}\left[2Mt^{\gamma+1} + Mht^{\gamma} + L(N)h^\mu\right]
\]

\[
\leq t^{-\gamma}\left[L(N)(\gamma + 1)h^\mu + Mht^\gamma\right] \leq t^{-\gamma}h^\mu/(\gamma + 1)C_2(\mu, \gamma, T, M, N)
\]

for \(h \geq ((2M/\gamma L(N))t^{\gamma+1})^{1/\mu} \). Thus

\[
\|u(t + h) - u(t)\| \leq h^{\mu/(\gamma + 1)}C_1 + t^{-\gamma}h^\mu/(\gamma + 1)C_2
\]

\[
\leq t^{-\gamma}h^\mu/(\gamma + 1)C(\mu, \gamma, T, M, N)
\]

and the proof of the lemma is complete.

It was assumed in the Theorem that the initial value problem (2) has a solution on \([0, T]\). It is known (see, e.g., [1, 3.3]) that such a solution exists for different assumptions on the operators \(A, B \) and the underlying Banach space \(X \). If the operator \(A \) is homogeneous and \(m \)-accretive and \(B \) is Lipschitz continuous, a stronger regularity result can be found in [4]. We are interested in the case where both operators \(A \) and \(B \) are \(m \)-accretive and not necessarily continuous. In the sequel we suppose that both \(X \) and \(X^* \) are uniformly convex and separable. Following [1, Chapters II and III] we define \(|Ax| = \inf\{\|y\|: y \in Ax\} \) and \(A^0x = \{y \in Ax: \|y\| = |Ax|\} \). It is known [1, p. 118] that in this case the operator \(A^0 \) is single-valued and \((d/dt)S(t)u_0 = A^0S(t)u_0, \) a.e. \(t > 0, u_0 \in D(A) \).

If we suppose that \(D(A) \subset D(B), \) and \(B \) is bounded, then [1, Theorem 2.3.5] the operator \(A + B \) is \(m \)-accretive. We denote the correspondent semigroup by \(S_{A+B}(t). \)

The following lemma handles the structure of the operator \(A + B \) via the Kuratowski-Ryll-Nardzewski Selection Theorem (see the appendix).

Lemma 2. Let \(X, X^* \) be uniformly convex, separable Banach spaces and let \(T > 0. \) Let operators \(B, A \) be \(m \)-accretive, \(B \) be bounded, and \(D(B) \supset D(A) \). Then \(u(t) = S_{A+B}(t)u_0, \) \(t \geq 0, u_0 \in D(A), \) is a solution of the system \(u' + Au + Bu = 0, u(0) = u_0, \) in the sense of Definition 1.

Proof. We should prove that there exists an integrable function \(f \in L^1(0, T; X), f(t) \in -Bu(t) \) a.e. \(t \in [0, T] \) such that \(Hf = u. \) Note that \(|Au_0| < \infty \) since \(u_0 \in D(A) \). Therefore \(|(A + B)u_0| < \infty \) and \(u(t) \) is the strong solution, that is \(u(t) \) exists for almost every \(t \in [0, T] \) and \(u'(t) + Au + Bu(t) = 0 \) a.e. on \([0, T] \).
By \([1, \text{Theorem 3.1.6}]\) \(u'(t) = (A + B)^0 u(t)\) a.e. \(t \in [0, T]\). Since \((A + B)^0 z = \lim_{\lambda \to 0} (A + B)_\lambda z\) for each \(z \in D(A + B)\) \((A + B)_\lambda\) is the Yosida approximation; see \([1, \text{Proposition 2.3.6}]\) we get that \(u'(t)\) is integrable as the pointwise limit of the uniformly bounded continuous functions \((A + B)_\lambda u(t)\). By Lemma 3 in the Appendix there exist measurable functions \(g\) and \(f\) such that \(-g(t) + f(t) = u'(t), g(t) \in Au(t), -f(t) \in Bu(t)\) a.e. \(t \in [0, T]\). These functions are integrable, since they are bounded. Thus \(u'(t) = f(t)\) or \(u'(t) + Au(t) \equiv f(t)\) a.e. \(t \in [0, T]\), \(u(0) = u_0\). Since \(u(t)\) is the strong solution of the above system it is also its integral solution.

Corollary 1. Let \(X, X^*\) be uniformly convex, separable Banach spaces and \(T > 0\). Let the operators \(B\) and \(A\) be \(m\)-accretive and let \(B\) be bounded. If \(D(B) \supset D(A)\) and the semigroup \(S_A(t)\) satisfies \(\|S_A(t + h)x - S_A(t)x\| < t^{-\gamma}L(||x||)h^p\) for any \(x \in D(A), 0 \leq t \leq t + h \leq T (\gamma > 0, 0 < \mu < 1, L\) is nondecreasing), then the semigroup \(S_{A+B}(t)\) satisfies

\[
\|S_{A+B}(t+h)u_0 - S_{A+B}(t)u_0\| \leq Ct^{-\gamma}h^{\mu/(\gamma+1)},
\]

where \(0 \leq t \leq t + h \leq T, u_0 \in D(A)\), and the constant \(C\) is chosen as in the Theorem.

Proof. It is enough to prove the assertion for any \(u_0 \in D(A)\). By Lemma 2 \(u(t) = S_{A+B}(t)u_0\) is the solution of (2) in the sense of Definition 1. By the Theorem it satisfies the required inequality.

Remark. A detailed analysis of the proof shows that it is enough to require \(D(A) \subset D(B)\) in the above corollary.

Corollary 2. Let \(X, X^*\) be uniformly convex, separable Banach spaces, \(A\) be a homogeneous \(m\)-accretive operator (see \([4]\)), and \(B\) be a bounded, everywhere defined in \(X\) \(m\)-accretive operator. Suppose that \(C: X \to X\) is a compact continuous operator. Then the initial value problem \(u'(t) + Au(t) + Bu(t) \equiv Cu(t), 0 \leq t \leq T, u(0) = u_0 \in D(A) \subset X\), has a local solution.

Proof. Since \(A\) is homogeneous the generated semigroup \(S_A(t), t \geq 0\), satisfies \(\|S(t+h)x - S(t)x\| \leq L(||x||)t^{-1}h\) for any \(x \in D(A), 0 \leq t \leq t + h \leq T\) (see \([4, \text{Theorem 1}]\)). By Corollary 1 the semigroup \(S_{A+B}(t)\) satisfies

\[
\|S_{A+B}(t+h)u_0 - S_{A+B}(t)u_0\| \leq Ct^{-1}h^{1/2}, \quad u_0 \in D(A).
\]

Therefore this semigroup \(S_{A+B}\) is equicontinuous (that is the family of functions \(\{t \mapsto S_{A+B}(t)x, x \in D(A + B) \cap G\}\) is equicontinuous on \((0, T)\) for any bounded subset \(G \subset X\)). By \([8, \text{Proposition 1.2}]\) the initial value problem has a local solution.

Appendix. We will use the Kuratowski-Ryll-Nardzewski Selection Theorem, which we will restate as follows:

Theorem \([6, \text{p. 286}]\). Let \(Y\) be a complete, separable metric space. Suppose \(F: [0, T] \to 2^Y\) is such that \(F(t) \subset Y\) is closed for any \(t \in [0, T]\), and for each open set \(V\) in \(Y\) the set \(\{\omega \in [0, T]: F(\omega) \cap V \neq \emptyset\}\) is measurable. Then there exists a measurable function \(f: [0, T] \to Y\) such that \(f(\omega) \in F(\omega)\) for each \(\omega \in [0, T]\).
Recall that if a separable Banach space X and its dual X^* are uniformly convex, then any convex, bounded, and closed subset $W \subset X$ is weakly compact [9, §5.2]. The set W with the weak topology is a complete compact metric space.

Lemma 3. Let X, X^* be uniformly convex and separable Banach spaces. Suppose that $T > 0$, A, B are m-accretive operators in X, $\text{Dom}(A) \subseteq \text{Dom}(B)$, and B is bounded. Let $u: [0, T] \to \text{Dom}(A)$ be continuous and $h: [0, T] \to X$ be measurable and bounded.

If $h(t) \in (A + B)u(t)$ almost everywhere on $[0, T]$ then there exist measurable functions g and $f: [0, T] \to X$ such that $g(t) \in Au(t)$, $f(t) \in Bu(t)$, and $g(t) + f(t) = h(t)$ a.e. on $[0, T]$.

Proof. Define $F: [0, T] \to X \times X$ by $F(t) = \{(x, y) \in X \times X: x + y = h(t)$, $x \in Au(t)$, $y \in Bu(t)\}$. Note that $F(t) \neq \emptyset$ for any $t \in [0, T]$. Let $M_1 = \sup\{\|z\|: z \in Bu(t)$, $t \in [0, T]\}$, $M_2 = \sup\{\|h(t)\|: t \in [0, T]\}$, and $M = M_1 + M_2$. Then $\|x\|, \|y\| \leq M$ for any $(x, y) \in F(t)$, $0 \leq t \leq T$. Hence $F(t) \subseteq Y = Z \times Z$, where $Z = \{z \in X: \|z\| \leq M\}$. We supply Z with the weak topology of X. Thus Z is a compact (complete) metrizable space and so is Y with an appropriate product topology. Let $Q \subset [0, T]$ be any closed subset such that $h|_Q$ is continuous. Let W be any closed subset of Y. Then the set $\{\omega \in Q: F(\omega) \cap W \neq \emptyset\}$ is closed in $[0, T]$. Indeed, if $t_n \in Q$, $t_n \to t$ as $n \to \infty$ and $(x_n, y_n) \in F(t_n)$, then we can assume (passing to a subsequence) that $x_n \to x$, $y_n \to y$ in Z, since Z is compact. That is $x_n \to x$, $y_n \to y$ weakly in X. Since the operators A and B are demiclosed [1, Proposition 2.3.5] we have $x \in Au(t)$ and $y \in Bu(t)$. Also $x + y = h(t)$ since for any functional $e \in X^*$ we get $e(x + y) = \lim_{n \to \infty} e(x_n + y_n) = \lim_{n \to \infty} e(h(t_n)) = e(h(t))$. Therefore the set $\{\omega \in [0, T]: F(\omega) \cap W \neq \emptyset\}$ is measurable in $[0, T]$ as the union of the above closed sets. Since any open set V in Y can be represented as a countable union of closed sets W_n we get that $\{\omega \in [0, T]: F(\omega) \cap V \neq \emptyset\}$ is measurable in $[0, T]$ and the Kuratowski-Ryll-Nardzewski Selection Theorem can be applied to the multivalued function $F: [0, T] \to Y$ to obtain measurable functions $g(t)$ and $f(t)$ such that $g(t) + f(t) = h(t)$, $g(t) \in Au(f)$, and $f(t) \in Bu(t)$. The functions g and f are measurable as functions into Z. Since the Banach space X is separable they are measurable as functions into X with its strong topology by the Pettis theorem [9, §5.4]

References

Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73019