Norms on enveloping algebras
HTML articles powered by AMS MathViewer
- by Denis Luminet
- Proc. Amer. Math. Soc. 101 (1987), 65-66
- DOI: https://doi.org/10.1090/S0002-9939-1987-0897071-9
- PDF | Request permission
Abstract:
Let $\mathfrak {g}$ be a complex Lie algebra, and let $U$ be its enveloping algebra. $U$ is normable if and only if $\mathfrak {g}$ is nilpotent.References
- H. G. Dales, Norming nil algebras, Proc. Amer. Math. Soc. 83 (1981), no. 1, 71–74. MR 619984, DOI 10.1090/S0002-9939-1981-0619984-X
- Jacques Dixmier, Algèbres enveloppantes, Cahiers Scientifiques, Fasc. XXXVII, Gauthier-Villars Éditeur, Paris-Brussels-Montreal, Que., 1974 (French). MR 0498737
- J. Esterle, Homomorphismes discontinus des algèbres de Banach commutatives séparables, Studia Math. 66 (1979), no. 2, 119–141 (French, with English summary). MR 565154, DOI 10.4064/sm-66-2-119-141
- David Gurarie, Banach uniformly continuous representations of Lie groups and algebras, J. Functional Analysis 36 (1980), no. 3, 401–407. MR 571413, DOI 10.1016/0022-1236(80)90095-6
- Joseph L. Taylor, A general framework for a multi-operator functional calculus, Advances in Math. 9 (1972), 183–252. MR 328625, DOI 10.1016/0001-8708(72)90017-5
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 101 (1987), 65-66
- MSC: Primary 17B35; Secondary 46H70
- DOI: https://doi.org/10.1090/S0002-9939-1987-0897071-9
- MathSciNet review: 897071