$K^ n$-positive maps in $C^ \ast$-algebras
HTML articles powered by AMS MathViewer
- by Takashi Itoh
- Proc. Amer. Math. Soc. 101 (1987), 76-80
- DOI: https://doi.org/10.1090/S0002-9939-1987-0897073-2
- PDF | Request permission
Abstract:
Let ${K^n}$ be the set of $n$-positive maps of $B(H)$ to $B(H)$. A ${K^n}$-positive map of a ${C^ * }$-algebra $A$ to $B(H)$ is a positive linear map $\phi$ such that $\sum {{\text {Tr(}}\phi {\text {(}}} {a_i})b_i^t) \geq 0$ for any $\sum {{a_i} \otimes {b_i} \in \{ x \in A{ \otimes _\gamma }T(H)|{K^n}} { \ni ^\forall }\alpha ,({\text {id}} \otimes \alpha {\text {)(}}x{\text {)}} \geq {\text {0}}\}$. It is shown that the following three statements are equivalent. (1) Every ${K^n}$-positive map of $A$ to $B(H)$ is ${K^{n + 1}}$-positive. (2) Every ${K^n}$-positive map of $A$ to $B(H)$ is completely positive. (3) $A$ is an $n$-subhomogeneous ${C^ * }$-algebra.References
- Man Duen Choi, Positive linear maps on $C^{\ast }$-algebras, Canadian J. Math. 24 (1972), 520โ529. MR 315460, DOI 10.4153/CJM-1972-044-5
- Takashi Itoh, Positive maps and cones in $C^\ast$-algebras, Math. Japon. 31 (1986), no.ย 4, 607โ616. MR 856142
- R. R. Smith, Completely bounded maps between $C^{\ast }$-algebras, J. London Math. Soc. (2) 27 (1983), no.ย 1, 157โ166. MR 686514, DOI 10.1112/jlms/s2-27.1.157
- Erling Stรธrmer, Extension of positive maps into $B({\scr H})$, J. Funct. Anal. 66 (1986), no.ย 2, 235โ254. MR 832990, DOI 10.1016/0022-1236(86)90072-8
- Jun Tomiyama, On the difference of $n$-positivity and complete positivity in $C^{\ast }$-algebras, J. Functional Analysis 49 (1982), no.ย 1, 1โ9. MR 680854, DOI 10.1016/0022-1236(82)90083-0
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 101 (1987), 76-80
- MSC: Primary 46L05
- DOI: https://doi.org/10.1090/S0002-9939-1987-0897073-2
- MathSciNet review: 897073