On the Fekete-Szegő problem for close-to-convex functions
HTML articles powered by AMS MathViewer
- by Wolfram Koepf
- Proc. Amer. Math. Soc. 101 (1987), 89-95
- DOI: https://doi.org/10.1090/S0002-9939-1987-0897076-8
- PDF | Request permission
Abstract:
Let $S$ be the familiar class of normalized univalent functions in the unit disk. Fekete and Szegö proved the well-known result \[ {\max _{f \in S}}{\text {|}}{a_3} - \lambda a_2^2| = 1 + 2{e^{ - 2\lambda /1 - \lambda )}}\] for $\lambda \in [0,1]$. We consider the corresponding problem for the family $C$ of close-to-convex functions and get \[ \max \limits _{f \in C} |{a_3} - \lambda a_2^2 = \left \{ {\begin {array}{*{20}{c}} {3 - 4\lambda } & {{\text {if}}\lambda \in [0,1/3],} \\ {1/3 + 4/(9\lambda )} & {{\text {if}}\lambda \in {\text {[1/3,2/3],}}} \\ 1 & {{\text {if}}\lambda \in {\text {[2/3,1]}}{\text {.}}} \\ \end {array} } \right .\] As an application it is shown that $||{a_3}| - |{a_2}|| \leq 1$ for close-to-convex functions, in contrast to the result in $S$ \[ \max \limits _{f \in s} {\text {||}}{a_3}| - |{a_2}|| = 1.029....\]References
- A. Bielecki and Z. Lewandowski, Sur un théorème concernant les fonctions univalentes linéairement accessibles de M. Biernacki, Ann. Polon. Math. 12 (1962), 61–63 (French). MR 147636, DOI 10.4064/ap-12-1-61-63
- Peter L. Duren, Univalent functions, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 259, Springer-Verlag, New York, 1983. MR 708494 M. Fekete and G. Szegö, Eine Bemerkung über ungerade schlichte Functionen, J. London Math. Soc. 8 (1933), 85-89.
- Wilfred Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1 (1952), 169–185 (1953). MR 54711
- Wolfram Koepf, Coefficients of symmetric functions of bounded boundary rotation, Proc. Amer. Math. Soc. 105 (1989), no. 2, 324–329. MR 930244, DOI 10.1090/S0002-9939-1989-0930244-7
- Zdzisław Lewandowski, Sur l’identité de certaines classes de fonctions univalentes. I, Ann. Univ. Mariae Curie-Skłodowska Sect. A 12 (1958), 131–146 (French, with Russian and Polish summaries). MR 130354
- Zdzisław Lewandowski, Sur l’identité de certaines classes de fonctions univalentes. II, Ann. Univ. Mariae Curie-Skłodowska Sect. A 14 (1960), 19–46 (French, with Russian and Polish summaries). MR 156958
- Christian Pommerenke, Univalent functions, Studia Mathematica/Mathematische Lehrbücher, Band XXV, Vandenhoeck & Ruprecht, Göttingen, 1975. With a chapter on quadratic differentials by Gerd Jensen. MR 0507768
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 101 (1987), 89-95
- MSC: Primary 30C45
- DOI: https://doi.org/10.1090/S0002-9939-1987-0897076-8
- MathSciNet review: 897076