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ON THE FEKETE-SZEGO PROBLEM
FOR CLOSE-TO-CONVEX FUNCTIONS

WOLFRAM KOEPF

ABSTRACT. Let S be the familiar class of normalized univalent functions in
the unit disk. Fekete and Szeg6 proved the well-known result

max |ag — a2 =1+ 2¢~2M/(1=2)

f€s
for A € [0,1). We consider the corresponding problem for the family C of
close-to-convex functions and get

3 -4 if A €[0,1/3),
max las — Xa3| = { 1/3+4/(9)) if A € [1/3,2/3],
1 if A €[2/3,1).

As an application it is shown that | |az|—|az]|| < 1 for close-to-convex functions,
in contrast to the result in S

max | |az| — |a2|| = 1.029....
max| lag| ~ laz]|

1. Introduction. Let S denote the family of univalent functions f of the unit
disk, normalized by

(1) f(2)=z+a222 +azz®+--- .

Let St denote the subset of starlike functions, i.e. functions that have a starlike
range with respect to the origin. Further let C denote the family of close-to-convex
functions, which have been introduced by Kaplan [4]. A function f, normalized by
(1), is called close-to-convex if there exist a starlike function g and a real number
o, such that
, Re(e"*z2f'(2)/9(z)) > 0, a€]-m/2,7/2[
It turns out that a function is close-to-convex if and only if it maps the unit disk
univalently onto a domain whose complement is the union of half-lines, which are
pairwise disjoint up to possibly equal tips (see [6-7, 1]).
A well-known function of this kind is the Koebe function k with

X oz 1 (1+2\?
k(z)=nX=:lnz —(—1_—z)2—z<(m) —1),

which maps the unit disk onto the complement of the half-line | — 0o, —1/4], as the
last representation shows.

Many extremal problems within the class S are solved by the Koebe function.
On the other hand, the Koebe function satisfies

lasg — /\agl = |3 —4)[,
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whereas Fekete and Szegd showed [3]

max |az — Aa?| = 1 4 2722/ (1)
fes

for A € [0,1],
For A = 0,1 the Koebe function gives the maximum, but there is no Ag €]0, 1]
such that the functional |a3 — Apa3| is maximized by k. We shall show that

ax |az — Aa2| = 3 — 4\
r;leclas azl

for A € [0,1/3], so that for close-to-convex functions the situation is quite different.
This result implies furthermore that

max — =1
max| las| ~ laz] | = 1,

in contrast to the known estimate in S,

max - =1.029...
fesllaa| |az||

(see e.g. [2, Theorem 3.11]). Moreover we show that
1/3+4/(9)) if A€ [1/3,2/3],
1 if A € [2/3,1].

2. Preliminary results. Here we give some lemmas which will be used in the
next section to-solve the main problem.

Recall that a function f is called close-to-convex of order S if there exist a starlike
function g and a real number a, such that

| arg(e"*2f"(2)/9(2))| < B /2.
LEMMA 1 (see [5, Lemma 1]). Let f € C. Then the function h, defined by
(2) K(2) = (f'(z*)"%,  h(0)=0,
18 an odd close-to-convex function of order 1/2.

LEMMA 2 (see (8, p. 166, formula (10)]). Let p(z) = 1+ p1z + paz® + -+ and
Rep > 0. Then

max |az — Aa2| =
maxlaa - 2a3] = {

lp2 — p1/2| < 2~ |p1|?/2.
LEMMA 3. Let g(2) = 2z + b2z + b323 +--- € St. Then
lbs — Ab3| < max{1,[3 — 4A[}

which is sharp for the Koebe function k if A — 3/4| > 1/4 and for (k(2?))'/? =
z2/(1—22%) if |]X—3/4 < 1/4.

PROOF. Because g € St, the function
20'(2)/g(2) = 1+ boz + (2b3 —b2)22 + - = 1 +p12(3) + p222 + - --

has positive real part, so that |p; — 3p?| < 2—|p;|?/2 by Lemma 2. Let now A € C.
Then by (3) we have

lbs — Ab3| = FIp2 + (1 —20)p}| = § |p2 — 3p1 + (3 — 2)) P}
<E@-dmlP+]E -2 Imf?).
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If now [A —3/4| < 1, then
lbs — Ab3| < § (2= LIpal? + LIma|?) =

(2-
On the other hand, if |A — 3/4| > %, then we use |p;| < 2 (see e.g. (8, Corollary
2.3]), and get

|2

103 = Ab3] < 143 (|13 = 2M = 3) I [®
<1+43-4X\-1=|3-4). O
3. Main results. The first step of the solution of the Fekete-Szego problem for
close-to-convex functions is the special case A = 1/3.
THEOREM 1. Let f(2) = 2+ azz® +a3z® +--- € C. Then |ag — 3a3| < 3.

PROOF. Let f € C. Then by Lemma 1 the function A, defined by (2), is an odd
close-to-convex function of order 1/2.

For such functions, the author gave sharp bounds on the coefficients (see [5,
Theorem 1]), in particular, the fifth coefficient of h is bounded in modulus by 1/2.
On the other hand the fifth coefficient of A is given by T%(ag — 1a3), which implies
the result. 0O

The next corollary follows easily from the theorem using |as| < 2 (see e.g. [2,
Theorem 2.2)).

COROLLARY 1. Let A €(0,1/3]. Then

axl|az — Aay| = 3 — 4).
Ifne las a2|

The mazimum 13 attained by the Koebe function.

Another consequence of the theorem is the following result about successive
coefficients of close-to-convex functions.

COROLLARY 2. Let f€C. Then ||ag| — |az|| < 1.

PROOF. It is well known that |az| — |ag| < 1 for all f € S (see e.g. [2, Theorem
3.11]). Moreover, if |az| < 1, then also |ag| — |az| < 1 (see e.g. [2, proof of Theorem
3.11]). Now let f € C and |az| € [1,2]. Then Theorem 1 implies that

las| — |az| < las — $a3| + laz|® — |az|
< 8+ Lag? —ag| <1,
as |ag| is in the above range. O

The following notation will be used throughout the paper. For f(z) = z+az2%+
asz3 + .- € C there is a representation of the form

() F) =22 5

z

with some function g(2) = 2 4 by2% 4+ b3z® + --- € St and some function p(z) =
1+p12+p22%+- - such that Re(e**p(z)) > 0, a €] —n/2,7/2[. Then the function
p(2) =1+ p1z +p222 + - - -, defined by

() Pn=cosa-e®-p,, neN,
has positive real part. Comparing coeffficients in (4) we get

3az = bz + p1b2 + p2, 2ag = by + Py,
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so that
(6) az — Aaj = §(bs — 32b3) + 3(B2 — 3MB}) + Paba(3 — A/2).
Now we consider the case A = 2/3.

THEOREM 2. Let f(2) = z=a2*> +a32® +--- € C. Then |ag — 2a3| < 1.

PROOF. From (6) it follows that

lag — 2a3| < 3lbs — 13| + 1152 — 153.
From (5) we get
P2 — 3P3 =cosa - e " (p; — L cosa - e p?)
= cosa - e **(py — 4p? + up}),

where |2u]2 = |1 — cosa - e7**|2 = sin? a. Now we get with the aid of Lemmas 2
and 3 that

2 1 2
cosa (2— Iﬂ;—'—) + gcosa|sina|%

lp1[ :
<1 —cosaT(l —|sina|) <1. O

An easy consequence using |a3 — a3| < 1is
COROLLARY 3. Let A\ € [2/3,1]. Then

max |as — Ma2| = 1.
fecl 3 2l

The mazimum is attained by the function (k(2?))/2. O

We remark that Theorem 2 provides a direct proof of |az|—|az| < 1 for |az| < 3/2
(compare with the proof of Corollary 2), namely

las| — |az| < |as — 2a3] + Z|az|?® — |az]
<1+ 2lag)® —az| <1

if |ao| € [0,3/2).
It remains to consider the case A €]1/3,2/3|.

THEOREM 3. Let ) €]1/3,2/3[. Then

1 4
—_— 2 [ _
rfr}saglag Aaj| 3+9/\
The mazimum 18 attained by the function f, which is defined by
w1 (142 o 1+22 _
f(z)'—(l_z)g t1—2+(1 t)1—22 L] f(O)—Oa

where t = 2/(3)) — 1.

PROOF. Consider equation (6). We use the estimate |b3 — 3Ab%| < 3(1 — )),
which comes from Lemma 3, further equations (5) and |be| < 2, getting
cea +cosa(§—/\) |p1]-

3

—ta,2

3
P2 — Z/\cosa-e Pi

las — Xa2| <1-X+
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Writing 3Acosa - €' = 1 — u, we have
[2u? =1 — $Xcosa -2 =1— (83X — 2A%) cos? o,

which implies with the aid of Lemma 2 that

2
52+|£;—l—(\/1— <3)\——§/\2)cos2a—l),

so that—using the notations y := cosa and p := |p;|—it follows that

2 p? 9 2
—_ 2 <1- — — — —Z)\2 2 _ - —
laz — Aa3| < 1 /\+y(3+ 5 (\/1 (3,\ 4,\ )y 1) +p(3 ,\))

=: F)\(psy)

For further simplification we shall use the notation v :=2 — 3\.
Now we shall show that F) attains its maximum value for (p,y) € [0,2] x [0,1]
at the point (4/(3X) — 2,1). Observe that

4 1 4
M F)‘(ﬁ—z’l>_§+ﬁ'

3 )
P2 — Z/\ cosa - e "p?

Suppose now that F) attains its maximum value at an interior point (pg,yo) €
]0,2[x]0, 1[. Then the partial derivates dF/dp and 0F)/dy must vanish at (po, yo)-
The equality (0F)/dp)(po,yo) = 0 gives the relation

8 1- 3,\__9,\2> 2_1_-—__”
© \/ ( 4 Yo Po

so that

9 27 "/2
3\ - -,\2) 2=l
( 2 Yo o ;%‘

Now, (8F»/0y)(po,yo) = 0 implies

2 apo _ p3(2v/po = +*/pf)

36 6(1—/po)
so that, by solving the quadratic equation for pg, we get
(9) o =2(1-VI=72).

Therefore, at (po,yo) the value of F becomes, using (8) and (9),

FA(Po,yo)?l—A+y(g+l(1_M))

3 3

< 4+~y—+/1-72
3 )

(10)

because y < 1.
Since A €]1/3,2/3], the number -~ lies between 0 and 1 so that there is some 6 €

10, w/2[ with v = cos § and /1 — 42 = sin§. The evident inequality 1 < cosé +siné
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implies
2—cosbéd <1+sinéd

= (2 —cos6)(1 —siné) < 1 —sin? 6 = cos? 6
= @2-7 (1-VI=77) <

= (2-) (4+7- V1) <6-1
=>4+7—\/W 1 4 1 4

3 <3ty T3tox
Thus, using (7) and (10), we get a contradiction to our assumption that F) attains
its maximum value at (pg, yo), so that the maximum must be attained at a boundary
point.

In both cases y = 0 and p = 0 an easy computation shows that the maximal
value (7) is not attained. If y = 1 we have

5 2 A
R = Gap) =3 A+ (5 -3)p- 37

Because G (2) = 3—4) is not maximal, the local maximum at p = 4/(3))—2—given
by dG(p)/dp = 0—is global. This leads to the maximal value (7).
Now it remains to prove that

1 4
< 4

for p =2, y €]0, 1[. This statement is equivalent to

o moen (D))<t

for v =2 — 3 €]0, 1[. Because we already know that H,(y) < 4/(2 — ) — v when
y € {0,1}, it suffices to show (11) for points with dH,(y)/dy = 0. This leads to

<1_f) = 4—724+7/8+~2
s :

(12) ,

Observe that 0 < y < 1 when (12) is satisfied. Squaring inequality (11) and
substituting (12) gives the following inequality:

2
4 — 2 8 2 8 2 _
4( v+ 7/ +7)(\/ +7 7+7)

8 4

<(-%) (5-)

It remains to prove (13). A lengthy calculation gives—after multiplying with the
number (2 — «), which is positive—the equivalent version

Y2 =B+ < (4+27)(4— 27+~ - (2—7)(8 +207% — 4*)
= 48 — 24 — 2472 + 28~ — 24% + 45,

(13)
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The right-hand side turns out to be positive:
48 — 24y — 2447 + 28~4% — 29 4+ 4°
>287° 27" +4° =1°(28 - 27+ %) > 1*(26 +1°) 2 0,
so that equivalently, squaring again
Y2 = 7)2(8 + %)% < (48 — 247 — 2477 + 287° — 27 +4%)2.
A further lengthy computation gives the equivalent reformulation
A8 =297 #1748 — 1275 — 704* + 184~° — 11842 — 72y + 72
= (1 =79)2(1® + 16~ + 207% — 4642 + 727 + 72)
= (1 =7)%(7® + 164* + 207® + 2672 + 727(1 — ) + 72) > 0,
which is trivially true. This finishes the proof of the inequality

1 4
—dai| <+ —.
lag — Aa3| < 3 + o
From our considerations it follows that equality holds if b2 = 2 and b3 = 3 (so that
g is a rotation of k), and if @ =0, pa = 2, and p; = 4/(3)) — 2; the function

- 142 1422 2
P(Z)—t<1_z)+(1—t)<1—_—z‘5>, b=y L

satisfies these conditions, which makes the result sharp. O
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