Weighted norm inequalities for the Fourier transform on certain totally disconnected groups
HTML articles powered by AMS MathViewer
- by T. S. Quek
- Proc. Amer. Math. Soc. 101 (1987), 113-121
- DOI: https://doi.org/10.1090/S0002-9939-1987-0897080-X
- PDF | Request permission
Abstract:
Let $G$ be a locally compact totally disconnected Abelian group with dual group $\Gamma$. Let $U$ and $V$ be nonnegative measurable functions on $\Gamma$ and $G$, respectively. In this paper we give, in terms of $U$ and $V$, a necessary condition and some sufficient conditions for the inequality $||\hat fU|{|_q} \leq C||fV|{|_p}$ to hold for all $f$ in ${L_1}\left ( G \right )$, where $\hat f$ denotes the Fourier transform of $f$ and $1 < p \leq q < \infty$. If $U$ and $V$ are both radial, we give a necessary and sufficient condition for the above norm inequality to hold for all $f$ in ${L_1}\left ( G \right )$.References
- J. J. Benedetto and H. P. Heinig, Weighted Hardy spaces and the Laplace transform, Harmonic analysis (Cortona, 1982) Lecture Notes in Math., vol. 992, Springer, Berlin, 1983, pp. 240–277. MR 729358, DOI 10.1007/BFb0069163 J. J. Benedetto, H. P. Heinig, and R. Johnson, Boundary values of functions in weighted Hardy spaces, preprint.
- Hans P. Heinig, Weighted norm inequalities for classes of operators, Indiana Univ. Math. J. 33 (1984), no. 4, 573–582. MR 749315, DOI 10.1512/iumj.1984.33.33030
- Edwin Hewitt and Karl Stromberg, Real and abstract analysis, Graduate Texts in Mathematics, No. 25, Springer-Verlag, New York-Heidelberg, 1975. A modern treatment of the theory of functions of a real variable; Third printing. MR 0367121
- W. B. Jurkat and G. Sampson, On rearrangement and weight inequalities for the Fourier transform, Indiana Univ. Math. J. 33 (1984), no. 2, 257–270. MR 733899, DOI 10.1512/iumj.1984.33.33013
- Benjamin Muckenhoupt, Weighted norm inequalities for classical operators, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 69–83. MR 545240
- Benjamin Muckenhoupt, Weighted norm inequalities for the Fourier transform, Trans. Amer. Math. Soc. 276 (1983), no. 2, 729–742. MR 688974, DOI 10.1090/S0002-9947-1983-0688974-X
- Benjamin Muckenhoupt, A note on two weight function conditions for a Fourier transform norm inequality, Proc. Amer. Math. Soc. 88 (1983), no. 1, 97–100. MR 691285, DOI 10.1090/S0002-9939-1983-0691285-5
- C. W. Onneweer, Generalized Lipschitz spaces and Herz spaces on certain totally disconnected groups, Martingale theory in harmonic analysis and Banach spaces (Cleveland, Ohio, 1981) Lecture Notes in Math., vol. 939, Springer, Berlin-New York, 1982, pp. 106–121. MR 668541 —, Weak ${L_p}$-spaces and weighted norm inequalities for the Fourier transform on locally compact Vilenkin groups, preprint.
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 101 (1987), 113-121
- MSC: Primary 43A70
- DOI: https://doi.org/10.1090/S0002-9939-1987-0897080-X
- MathSciNet review: 897080