Multicoherence of spaces of the form $X/M$
HTML articles powered by AMS MathViewer
- by Alejandro Illanes M.
- Proc. Amer. Math. Soc. 101 (1987), 190-194
- DOI: https://doi.org/10.1090/S0002-9939-1987-0897093-8
- PDF | Request permission
Abstract:
Let $X$ be a connected, locally connected, normal ${T_1}$-space and let $M$ be a closed connected, locally connected subspace of $X$. Suppose that $X/M$ denotes the space obtained by identifying $M$ in a single point, and that, for a connected space $Y$, $\imath (Y)$ denotes the multicoherence degree of $Y$. In this paper, we prove that if $M$ is unicoherent, then $\imath (X) = \imath (X/M)$. As an application of this result we prove that if $X = A \cup B$, where $A,B$ are closed subsets of $X$ and $A \cap B$ is connected, locally connected and unicoherent, then $\imath (X) = \imath (A) + \imath (B)$. Also, we prove that if $X/M$ is unicoherent, then $\imath (X) \leqslant \imath (M)$.References
- Stanisław T. Czuba, Some properties of unicoherence, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), no. 9, 711–716 (English, with Russian summary). MR 600725
- R. F. Dickman Jr., Unicoherence and related properties, Duke Math. J. 34 (1967), 343–351. MR 212767 S. Eilenberg, Transformations continues en circonference et la topologie du plan, Fund. Math. 26 (1936), 61-112. —, Sur les espaces multicohérents. I, Fund. Math. 27 (1936), 153-190. —, Sur la multicohérence ces surfaces closes, C. R. Acad. Sci. Warsaw 30 (1937), 109-111.
- Tudor Ganea, Zur Multikohärenz topologischer Gruppen, Math. Nachr. 7 (1952), 323–334 (German). MR 49208, DOI 10.1002/mana.19520070602 A. Illanes M., Multicoherence of spaces obtained by identifying a finite number of points; multicoherence of one-point compactifications (preprint).
- S. Mardešić, Equivalence of singular and Čech homology for ANR-s. Application to unicoherence, Fund. Math. 46 (1958), 29–45. MR 99027, DOI 10.4064/fm-46-1-29-45
- William S. Massey, Algebraic topology: An introduction, Harcourt, Brace & World, Inc., New York, 1967. MR 0211390
- A. H. Stone, Incidence relations in multicoherent spaces. II, Canad. J. Math. 2 (1950), 461–480. MR 38065, DOI 10.4153/cjm-1950-044-5
- Gordon Thomas Whyburn, Analytic Topology, American Mathematical Society Colloquium Publications, Vol. 28, American Mathematical Society, New York, 1942. MR 0007095, DOI 10.1090/coll/028
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 101 (1987), 190-194
- MSC: Primary 54F55
- DOI: https://doi.org/10.1090/S0002-9939-1987-0897093-8
- MathSciNet review: 897093