A CHARACTERIZATION OF INNER AUTOMORPHISMS

PAUL E. SCHUPP

ABSTRACT. It turns out that one can characterize inner automorphisms without mentioning either conjugation or specific elements. We prove the following theorem:

Theorem. Let G be a group and let α be an automorphism of G. The automorphism α is an inner automorphism of G if and only if α has the property that whenever G is embedded in a group H, then α extends to some automorphism of H.

It turns out that in the category of groups one can characterize inner automorphisms without mentioning either conjugation or specific elements. It is obvious that if G is a group with α an inner automorphism of G and G is embedded in a group H, then α extends to an automorphism of H; viz., conjugation by the correct element. Angus Macintyre asked whether or not this extension property actually characterizes inner automorphisms. In this note we prove that it does.

Theorem. Let G be a group and let α be an automorphism of G. The automorphism α is an inner automorphism of G if and only if α has the property that whenever G is embedded in a group H then α extends to some automorphism of H.

Proof. A subgroup K of a group H is malnormal in H if $hKh^{-1} \cap K = \{1\}$ for all $h \in H \setminus K$. We shall prove that any group G is embeddable as a malnormal subgroup of a complete group H.

This establishes the theorem, for suppose that the automorphism α of G extends to an automorphism β of H where G and H are as in the previous paragraph. Since H is complete, β must be an inner automorphism of H, say that $\beta(h) = h_0h_0^{-1}$.

Since β extends α, we have $h_0Gh_0^{-1} = G$ but since G is malnormal in H, we have $h_0 \not\in G$ (except possibly in the uninteresting case $G = \{1\}$) and thus α is an inner automorphism of G.

The theorem in the case where G is countable is really already proved in Miller and Schupp [1]. Here we follow the same idea of using small cancellation products but arrange things to work when the cardinality of G is arbitrary. We shall use only a few well-known results of small cancellation theory (see [2]). We shall construct a certain small cancellation product of G and sufficiently many finite cyclic groups. We use σ, τ, and λ to denote ordinal numbers.

Let $\{g_\sigma : \sigma < \lambda\}$ be a well-ordered set of generators for G. Let

$$F = G * \langle x; x^{11} \rangle * \left(\bigodot_{\sigma < \lambda} \langle b_\sigma, b_\sigma^2 \rangle \right).$$

For $\sigma < \lambda$, let

$$r_\sigma = g_\sigma(xb_\sigma)xb_\sigma^2(xb_\sigma)^2xb_\sigma^2 \cdots (xb_\sigma)^{80}$$

Received by the editors June 13, 1986.

1980 Mathematics Subject Classification (1985 Revision). Primary 20E36.

This research was supported by National Science Foundation Grant MCS-80-03251.

©1987 American Mathematical Society

0002-9939/87 $1.00 + $.25 per page
and let
\[s_\sigma = x b_\sigma^2 (x b_\sigma)^{61} x b_\sigma^2 \cdots (x b_\sigma)^{160}. \]
For \(\sigma < \tau < \lambda \) let
\[t_{\sigma, \tau} = (x b_\sigma) x b_\tau (x b_\tau)^3 x b_\tau \cdots (x b_\tau)^{80}. \]
Let \(R \) be the symmetrized subset of \(F \) generated by \(\{t_{\sigma, \tau}, s_\sigma, t_{\sigma, \tau}: \sigma < \tau < \lambda \} \). It is clear that \(R \) satisfies the small cancellation condition \(C'(1/10) \). Let \(N \) be the normal closure of \(R \) in \(F \) and let \(H = F/N \). Then \(G \) is embedded in \(H \). Now no \(r \in R \) has a subword of the form \(u f u^{-1} \) with \(u \neq 1 \) and \(f \) in a factor of \(F \). If \(u \) does not end with a letter from the same factor as \(f \), then \(u f u^{-1} \) is in free product normal form as written. If \(u \) is \(R \)-reduced, then \(u f u^{-1} f' \neq 1 \) in \(H \) for any \(f' \) in a factor of \(F \) since small cancellation theory says that any nontrivial word of \(F \) which represents the identity of \(G \) must contain more than seven-tenths of an element of \(R \). Thus \(G \) is malnormal in \(H \). This argument also shows that \(H \) has trivial center.

We must show that \(H \) is complete. Clearly, \(H \) is generated by \(x \) and the \(b_\sigma \) in view of the relators \(r_\sigma \). We next note that none of \(x \) or the \(b_\eta \) is contained in the subgroup of \(H \) generated by the other generators and \(G \). For suppose that some \(b_\eta \in G \{G, x, b_\sigma: \sigma < \eta \} \). Then an equation \(b_\eta = w \) holds in \(H \) where \(w \) does not contain \(b_\eta \). We may suppose that \(w \) is \(R \)-reduced. Now any element of \(R \) contains only one \(b_\sigma \) generator or many occurrences of both \(b_\sigma \) and \(b_\eta \). Thus the equation \(w b_\eta^{-1} = 1 \) in \(H \) cannot hold.

The Torsion Theorem for small cancellation quotients of free products says that the only elements of finite order in \(H \) are conjugates of elements of \(G \), conjugates of powers of \(x \), and conjugates of powers of the \(b_\sigma \). Knowing all the elements of finite order is a key point in analyzing automorphisms of \(H \). Let \(\varphi \) be any automorphism of \(H \). We need only prove that, up to an inner automorphism, \(\varphi \) fixes \(x \) and all the \(b_\sigma \). Since \(\varphi(x) \) has order eleven, \(\varphi(x) \) is either a conjugate of an element of \(G \) or a conjugate of a power of \(x \). Following \(\varphi \) by an inner automorphism we may suppose that \(\varphi(x) \) is in a factor. First suppose that \(\varphi(x) = g \in G \). Now \(H = Gp(G, x, b_\sigma: \sigma < \lambda) \) but, by the remark above, \(x \not\in Gp(G, b_\eta: \sigma < \eta) \). Thus for some \(\eta \) we must have \(\varphi(b_\eta) = u g_1 u^{-1} \) with \(g_1 \in G \) or \(\varphi(b_\eta) = u b_\eta^k u^{-1} \) where \(u \) is \(R \)-reduced and contains \(x \). Following \(\varphi \) by another inner automorphism if necessary, we may assume that \(u \) does not begin with an element of \(G \). In the case that \(\varphi(b_\eta) = u b_\eta^k u^{-1} \) we have \(\varphi(s_\eta) = g u b_\eta^k u^{-1} \cdots (g u b_\eta^k u^{-1})^{160} \) which must be equal to the identity in \(H \). But the above expression is in free product normal form as written and cannot contain seven-tenths of an element of \(R \). Similarly, the case \(\varphi(b_\eta) = u g^{-1} u^{-1} \) leads to a contradiction. We conclude that \(\varphi(x) = x^j \) for some \(j \). With this fact a similar argument now establishes that each \(\varphi(b_\sigma) = b_\sigma^k \) for some choice of \(\tau \) and \(\eta \). But now application of \(\varphi \) to the relators \(s_\sigma \) shows that \(j \) and each \(k \) must be equal to one. For,
\[\varepsilon(s_\sigma) = x^j b_\gamma^k (x^j b_\gamma^k)^{80} \cdots (x^j b_\gamma^k)^{160} \]
and the only way that the latter expression can contain a large part of a relator is to have \(j = k = 1 \). So we conclude that \(\varphi \) fixes \(x \) and permutes the \(b_\sigma \).

We now show that \(\varphi \) fixes the \(b_\sigma \). First of all, we show that if \(\sigma < \tau \), \(\varphi(b_\tau) = b_\gamma \), and \(\varphi(b_\tau) = b_\eta \) then \(\gamma < \eta \), that is, \(\varphi \) is order-preserving on subscripts. For, applying \(\varphi \) to \(t_{\sigma, \tau} \) we have
\[\varphi(t_{\sigma, \tau}) = x b_\gamma x b_\eta x b_\eta^2 \cdots (x b_\gamma)^{80} \]
which must equal the indentity in H. The only element of R which $\varphi(t_{\sigma,\tau})$ could contain a large part of is $t_{\gamma,\eta}$ which yields $\gamma < \eta$. But now we can conclude the proof, for, by the remark on the minimality of the generating set $\{x, b_{\sigma} : \sigma < \lambda\}$, all b_{σ} must occur in the range of φ. If φ does not fix every b_{σ}, let δ be the least subscript such that $\varphi(b_{\delta}) \neq b_{\delta}$. Then $\varphi(b_{\delta}) = b_{\eta}$ with $\eta > \delta$. Since φ is order-preserving on subscripts, we have $b_{\delta} \notin \text{Gp}\{x, \varphi(b_{\sigma}) : \sigma < \lambda\}$ contradicting the fact that the latter set generates H. Thus H is complete.

Bibliography

Department of Mathematics, University of Illinois, Urbana, Illinois 61801

LITP, Université Paris 7, Paris, France