Semisimple representations and affine rings
Author:
Daniel R. Farkas
Journal:
Proc. Amer. Math. Soc. 101 (1987), 237-238
MSC:
Primary 16A38
DOI:
https://doi.org/10.1090/S0002-9939-1987-0902534-3
MathSciNet review:
902534
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: If all finite-dimensional representations of an affine algebra are semisimple, then there are only finitely many representations of each degree.
- [1] Alexander Lubotzky and Andy R. Magid, Varieties of representations of finitely generated groups, Mem. Amer. Math. Soc. 58 (1985), no. 336, xi+117. MR 818915, https://doi.org/10.1090/memo/0336
- [2] Claudio Procesi, Rings with polynomial identities, Marcel Dekker, Inc., New York, 1973. Pure and Applied Mathematics, 17. MR 0366968
- [3] Louis Halle Rowen, Polynomial identities in ring theory, Pure and Applied Mathematics, vol. 84, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. MR 576061
- [4] L. W. Small, Rings satisfying a polynomial identity, Vorlesungen aus dem Fachbereich Mathematik der Universität Essen [Lecture Notes in Mathematics at the University of Essen], vol. 5, Universität Essen, Fachbereich Mathematik, Essen, 1980. Written from notes taken by Christine Bessenrodt. MR 601386
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A38
Retrieve articles in all journals with MSC: 16A38
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1987-0902534-3
Keywords:
Finite-dimensional representations,
polynomial identities
Article copyright:
© Copyright 1987
American Mathematical Society