Finite codimensional ideals in Banach algebras
HTML articles powered by AMS MathViewer
- by Krzysztof Jarosz
- Proc. Amer. Math. Soc. 101 (1987), 313-316
- DOI: https://doi.org/10.1090/S0002-9939-1987-0902548-3
- PDF | Request permission
Abstract:
Let $A$ be a commutative, selfadjoint, point spectral Banach algebra and let $M$ be a finite codimensional closed subspace of $A$ such that for each $f$ in $M$ there are $n$ distinct maximal ideals $I_1^f, \ldots ,I_n^f$ of $A$ with $f \in I_j^f$. We prove that then there are distinct maximal ideals ${I_1}, \ldots ,{I_n}$ of $A$ such that $M \subset {I_1} \cap \cdots \cap {I_n}$; in particular if codim$(M) = n$, then $M$ is an ideal.References
- C P. Chen and P. J. Cohen, Ideals of finite codimension in commutative Banach algebras, manuscript.
- Andrew M. Gleason, A characterization of maximal ideals, J. Analyse Math. 19 (1967), 171–172. MR 213878, DOI 10.1007/BF02788714
- Krzysztof Jarosz, Finite codimensional ideals in function algebras, Trans. Amer. Math. Soc. 287 (1985), no. 2, 779–785. MR 768740, DOI 10.1090/S0002-9947-1985-0768740-9
- J.-P. Kahane and W. Żelazko, A characterization of maximal ideals in commutative Banach algebras, Studia Math. 29 (1968), 339–343. MR 226408, DOI 10.4064/sm-29-3-339-343 N. V. Rao, Closed subspaces of finite codimension in regular selfadjoint Banach algebras, manuscript.
- C. Robert Warner and Robert Whitley, A characterization of regular maximal ideals, Pacific J. Math. 30 (1969), 277–281. MR 415331
- C. Robert Warner and Robert Whitley, Ideals of finite codimension in $C[0,\,1]$ and $L^{1}(\textbf {R})$, Proc. Amer. Math. Soc. 76 (1979), no. 2, 263–267. MR 537085, DOI 10.1090/S0002-9939-1979-0537085-7
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 101 (1987), 313-316
- MSC: Primary 46J05; Secondary 46J20
- DOI: https://doi.org/10.1090/S0002-9939-1987-0902548-3
- MathSciNet review: 902548