SPECTRAL SYNTHESIS ON THE ALGEBRA OF ABSOLUTELY CONVERGENT LAGUERRE POLYNOMIAL SERIES

YÛICHI KANJIN

ABSTRACT. Askey and Gasper [1] constructed the algebra with convolution structure for Laguerre polynomials. We will answer the question of spectral synthesis of the one point on this algebra.

1. Introduction. Let $L_n^\alpha(x)$ be the Laguerre polynomial given by

$$L_n^\alpha(x) = \frac{e^x x^{-\alpha}}{n!} \left(\frac{d}{dx} \right)^n [e^{-x} x^{n+\alpha}],$$

and denote by $R_n^\alpha(x)$ the normalized Laguerre polynomial so that

$$R_n^\alpha(x) = L_n^\alpha(x)/L_n^\alpha(0),$$

where $\alpha > -1$ and n is a nonnegative integer.

Let $\alpha \geq -1/2$ and $\tau \geq 2$ or let $\alpha > \alpha_0 = (-5 + (17)^{1/2})/2$ and $\tau \geq 1$. Let $A^{(\alpha, \tau)}$ be the space

$$\left\{ f(x) \text{ on } [0, \infty); \right. \left. f(x) = \sum_{n=0}^\infty a_n R_n^\alpha(x) e^{-\tau x}, \sum_{n=0}^\infty |a_n| < \infty \right\},$$

and introduce a norm to $A^{(\alpha, \tau)}$ by $\|f\| = \sum_{n=0}^\infty |a_n|$. Then Askey and Gasper [1] showed that

(A) [1, §§4, 5] $A^{(\alpha, \tau)}$ is a Banach algebra of continuous functions on the interval $[0, \infty)$ vanishing at infinity with the product of pointwise multiplication of functions.

Kanjin [3] studied some properties of the algebra $A^{(\alpha, \tau)}$ and showed that

(B) [3, THEOREM 1, COROLLARY 1] The algebra $A^{(\alpha, \tau)}$ is semisimple and regular. The maximal ideal space of $A^{(\alpha, \tau)}$ is the interval $[0, \infty)$, and the Gelfand transform of f in $A^{(\alpha, \tau)}$ is given by f itself.

(C) [3, THEOREM 2] Let $x_0 > 0$. If $\alpha \geq 1/2$ and $\tau \geq 1$, then the singleton $\{x_0\}$ is not a set of spectral synthesis for $A^{(\alpha, \tau)}$.

Here, a closed set E of $[0, \infty)$ is called a set of spectral synthesis for $A^{(\alpha, \tau)}$ if a closed ideal I such that $Z(I) = E$ is unique, where $Z(I) = \{x \text{ in } [0, \infty); f(x) = 0 \text{ for all } f \text{ in } I\}$.

The purpose of this paper is to solve the problem which remains unsolved in (C).

THEOREM. (1) Let $\alpha \geq -1/2$ and $\tau \geq 2$ or let $\alpha > \alpha_0$ and $\tau \geq 1$. Then, for every (α, τ), the singleton $\{0\}$ is a set of spectral synthesis for $A^{(\alpha, \tau)}$.
(2) Let \(x_0 > 0 \). If \(-1/2 \leq \alpha < 1/2\) and \(\tau \geq 2\) or if \(\alpha_0 \leq \alpha < 1/2\) and \(\tau \geq 1\), then the singleton \(\{ x_0 \} \) is a set of spectral synthesis for \(A^{(\alpha, \tau)} \).

This theorem is an immediate consequence of the following proposition which will be proved in §3.

Proposition. Let \(\alpha \geq -1/2\) and \(\tau \geq 2\) or let \(\alpha \geq \alpha_0\) and \(\tau \geq 1\). Let \(I \) be a closed ideal in \(A^{(\alpha, \tau)} \) such that \(\mathbb{Z}(I) = \{ x_0 \}, x_0 \geq 0 \). If \(x_0 > 0 \), then \(I = \{ f \in A^{(\alpha, \tau)}; f^{(j)}(x_0) = 0, j = 0, 1, \ldots, M \} \) for some \(M \leq \alpha + 1/2\). If \(x_0 = 0 \), then \(I = \{ f \in A^{(\alpha, \tau)}; f(0) = 0 \} \).

Related results will be found in Cazzaniga and Meaney [2], Wolfenstetter [8], and Schwartz [6]. They are concerned with spectral synthesis on the algebra of absolutely convergent Jacobi polynomial series and on the algebra of Hankel transforms.

2. **A lemma.** First, we will prepare a lemma for the proof of the proposition. Let \(C_c^\infty[0, \infty) \) be the space of functions on \([0, \infty)\) which are the restrictions of infinitely differentiable functions with compact support in \((-\infty, \infty)\).

Lemma. Let \(\alpha \geq -1/2\) and \(\tau \geq 2\) or let \(\alpha \geq \alpha_0\) and \(\tau \geq 1\).

1. Let \(f \) be in \(C_c^\infty[0, \infty) \) and let \(q \) be the least integer greater than \(\alpha + 3/2\). Then \(f \) is in \(A^{(\alpha, \tau)} \) and

\[
\|f\| \leq C \left(\sup_{x \geq 0} |f(x)e^{\tau x}| + K^q \sup_{x \geq 0} \left| \left(\frac{d}{dx} \right)^q f(x)e^{\tau x} \right| \right),
\]

where \(C \) is a constant depending only on \(\alpha \) and \(\tau \), and \(K \) is a number such that \(\sup f \subset [0, K] \).

2. \(C_c^\infty[0, \infty) \) is dense in \(A^{(\alpha, \tau)} \).

3. Let \(f \) be in \(A^{(\alpha, \tau)} \) and let \(r \) be the greatest integer not exceeding \(\alpha + 1/2 \). Then \(f \) is \(r \)-times continuously differentiable and, for \(x \) in \((0, \infty)\) and \(j = 0, 1, \ldots, r \), there exists a constant \(B \) not depending on \(f \) such that \(|f^{(j)}(x)| \leq B\|f\| \).

Proof. (2) is [3, Lemma 2] and (3) is implicitly proved in the proof of [3, Theorem 2], and also, in weak form, (1) is given in [3]. Here, we will only give an outline of the proof of (1). If \(f(x) = \sum_{n=0}^{\infty} a_n R_n^\alpha(x)e^{-\tau x} \), then

\[
a_n = \Gamma(\alpha + 1)^{-1} \int_0^\infty f(x)e^{\tau x}L_n^\alpha(x)e^{-x^\alpha} \, dx.
\]

We put \(\|f\| = \left\{ \sum_{n \leq 1/K} \left| a_n \right| + \sum_{1/K < n < K} \right\} |a_n| = S_1 + S_2 \). For \(S_1 \), we have

\[
S_1 \leq \frac{1}{\Gamma(\alpha + 1)} \sum_{n \leq 1/K} \int_0^K \left| f(x)e^{\tau x} \right| |L_n^\alpha(x)|e^{-x^2}e^{-x^2/\tau} \, dx
\]

and, by the inequality \(|L_n^\alpha(x)|e^{-x^2/\tau} \leq C \) for \(0 < x < 1/n \) (cf. [7, 8.22]), we have \(S_1 \leq C \sup_{0 \leq x \leq 1/n} |f(x)e^{\tau x}| \). Here and below, the letter \(C \) means positive constants depending only on \(\alpha \) and \(\tau \), and it may vary from inequality to inequality. From integration by parts, it follows that

\[
a_n = \frac{(n-q)!(\alpha+q)!}{\Gamma(n+q+1)!} \int_0^\infty \left\{ \left(\frac{d}{dx} \right)^q f(x)e^{\tau x} \right\} L_{n-q}^{\alpha+q}(x)e^{-x^\alpha} \, dx.
\]
We have
\[
S_2 \leq \sup_{0 \leq x} \left| \left(\frac{d}{dx} \right)^q f(x) e^{rx} \right| \sum_{1/K < n} n^{-q} \int_0^K |L_{n-q}^a(x)| e^{-axq} \, dx
\]
\[
\leq C \sup_{0 \leq x} \left| \left(\frac{d}{dx} \right)^q f(x) e^{rx} \right| \left\{ \sum_{1/K < n} n^{-q} \int_0^{1/n} + \sum_{1/K < n} n^{-q} \int_{1/n}^K \right\}
\]
\[
\leq C \sup_{0 \leq x} \left| \left(\frac{d}{dx} \right)^q f(x) e^{rx} \right| \{I_1 + I_2\}, \text{ say.}
\]
Then we have \(I_1 \leq CK^q \) and, by the inequality
\[
|L_n^a(x)| \leq Ce^{-x/2} x^{-\alpha/2-1/4} n^{\alpha/2-1/4}
\]
(cf. [7, 8.22]), we have \(I_2 \leq CK^q \). Q.E.D.

3. Proof of the proposition. Let \(L_I \) be the space of continuous linear functionals \(\phi \) on \(A^{(\alpha, \tau)} \) such that \(\phi(f) = 0 \) for all \(f \) in \(I \). We will show that, if \(\phi \) is in \(L_I \), then \(\phi \) is of the form

\[
\phi(f) = \begin{cases}
\sum_{j=0}^p a_j \delta_{x_0}^{(j)}(f), & p \leq \alpha + 1/2 \ (x_0 > 0), \\
0 & (x_0 = 0)
\end{cases}
\]

for \(f \) in \(A^{(\alpha, \tau)} \), where \(\delta_{x_0}^{(j)} \) is the functional such that \(\delta_{x_0}^{(j)}(f) = f^{(j)}(x_0) \) for \(f \) in \(A^{(\alpha, \tau)} \). Then the proposition is proved as follows. Let \(p(\phi) = \max\{j; a_j \neq 0\} \) for \(\phi \) in \(L_I \), and \(M = \max\{p(\phi); \phi \in L_I\} \). By (\ast\ast\ast\ast\), we have that \(M = 0 \) for \(x_0 = 0 \) and \(0 \leq M \leq \alpha + 1/2 \) for \(x_0 > 0 \). Let \(\phi_0 \) be a functional in \(L_I \) such that \(M = p(\phi_0) \).

From (1) in the lemma it follows that there exist functions \(h_m \) in \(A^{(\alpha, \tau)} \) such that \(h_m^{(k)}(x_0) = \delta_{mk} \), \(k, m = 0, 1, \ldots, M \), where \(\delta_{mk} \) is Kronecker’s symbol. For every \(f \) in \(I \), we have

\[
0 = \phi_0(fh_m) = \sum_{k=0}^M \left\{ \sum_{j=k}^M jC_m a_j f^{(j-k)}(x_0) \right\} h_m^{(k)}(x_0)
\]

\[
= \sum_{j=m}^M jC_m a_j f^{(j-m)}(x_0), \quad m = 0, 1, \ldots, M.
\]

Thus \(f^{(j)}(x_0) = 0 \) for \(j = 0, 1, \ldots, M \). This implies that \(I = \{ f \in A^{(\alpha, \tau)} ; f^{(j)}(x_0) = 0, j = 0, 1, \ldots, M \} \) since \(I \) is the space of \(f \) in \(A^{(\alpha, \tau)} \) such that \(\phi(f) = 0 \) for all \(\phi \) in \(L_I \).

Now we will prove (\ast\ast\ast\ast\ast). Let \(D(-\infty, \infty) \) be the test function space on \((-\infty, \infty)\) with usual topology. For \(f \) in \(D(-\infty, \infty) \), we put \(f_P(x) = f(x), \ x \geq 0 \), and \(f_N(x) = f(-x), \ x \geq 0 \). Then, by (1) in the lemma, we have that \(f_P \) and \(f_N \) are in \(A^{(\alpha, \tau)} \). Let \(\phi \) be in \(L_I \). We define \(\Phi_+ = \phi(f_P) + \phi(f_N) \) and \(\Phi_- = \phi(f_P) - \phi(f_N) \) for \(f \) in \(D(-\infty, \infty) \). By (1) again, we have

\[
|\Phi_\pm(f)| \leq \|\phi\| \left(\|f_P\| + \|f_N\| \right)
\]

\[
\leq C\|\phi\| e^{rK} \left(\sup_{-\infty < x < \infty} |f(x)| + K^q \sum_{j=1}^q \sup_{-\infty < x < \infty} |f^{(j)}(x)| \right),
\]
where \(K \) is a number such that \(\text{supp} \ f \subset [-K, K] \), and \(q \) is the least integer greater
than \(\alpha + 3/2 \). Thus \(\Phi_{\pm} \) are continuous linear functionals on \(D(-\infty, \infty) \) with order
not exceeding \(q \). Since \(A^{(\alpha, \gamma)} \) is regular, the ideal \(I \) contains the ideal of functions
in \(A^{(\alpha, \gamma)} \) which vanish on a neighborhood of \(x_0 \) (cf. \([4, 5.7]\)). This implies that the
supports of \(\Phi_{\pm} \) are the singleton \(\{x_0\} \). Thus \(\Phi_{\pm} \) have the forms
\[
\Phi_+ = \sum_{j=0}^{q} a_j^+ \delta_{x_0}^{(j)}, \quad \Phi_- = \sum_{j=0}^{q} a_j^- \delta_{x_0}^{(j)},
\]
where the \(a_j^\pm \) are constants (cf. \([5, 6.25]\)).

We will show that \(a_j^\pm = 0 \) for \(j > \alpha + 1/2 \) if \(x_0 > 0 \). Let \(u(x) \) be a function in
\(D(-\infty, \infty) \) such that \(u(x) = 1 \) on a neighborhood of \(x_0 \) and \(\text{supp} \ u \subset (0, \infty) \). Then
the function \(u(x)e^{-\tau x R_n^\alpha(x)} \) is in \(D(-\infty, \infty) \), and
\[
|\Phi_{\pm}(ue^{-\tau x R_n^\alpha})| \leq |\phi(ue^{-\tau x R_n^\alpha})| \leq ||\phi|| \|u\|
\]
since \(\|(e^{-\tau x R_n^\alpha})_p\| = 1 \). In particular, \(\Phi_{\pm}(ue^{-\tau x R_n^\alpha}) = O(1) \) \((n \to \infty) \). On the
other hand, by the formula \((d/dx)L_n^{\alpha}(x) = -L_n^{\alpha+1}(x) \) (cf. \([7, 5.1.14]\)) and the
asymptotic formula
\[
L_n^{\alpha}(x) = \pi^{-1/2} e^{-2x/2} x^{-\alpha/2-1/4} n^{\alpha/2-1/4} \cos[2(nx)^{1/2} - \alpha \pi/2 - \pi/4]
+ O(n^{\alpha/2-3/4}), \quad x > 0
\]
(cf. \([7, 8.22.1]\)), we have
\[
|\delta_{x_0}^{(j)}(ue^{-\tau x R_n^\alpha})| = O(n^{-(\alpha-j)/2-1/4}) \quad (n \to \infty),
\]
and
\[
\limsup_{n \to \infty} |\delta_{x_0}^{(j)}(ue^{-\tau x R_n^\alpha})| n^{(\alpha-j)/2+1/4} > 0
\]
for \(j = 0, 1, \ldots, q \). This implies that
\[
\limsup_{n \to \infty} |\Phi_{\pm}(ue^{-\tau x R_n^\alpha})| = \infty
\]
if \(a_j^\pm \neq 0 \) for some \(j > \alpha + 1/2 \). Thus we have \(a_j^\pm = 0 \) for \(j > \alpha + 1/2 \).

Next we will show that \(a_j^\pm = 0 \) for \(j > 0 \) if \(x_0 = 0 \). Let \(u_1(x) \) be an even
function in \(D(-\infty, \infty) \) such that \(u_1(x) = 1 \) for \(x \) in \([-1/2, 1/2]\) and \(u_1(x) = 0 \) for
\(x \) not in \((-1, 1)\). Put \(u_n(x) = u_1(nx), \ n = 2, 3, \ldots, \) and consider the function
\(u_n(x)e^{-\tau x R_n^\alpha(x)}, \ -\infty < x < \infty \). Then we have
\[
|\Phi_{\pm}(u_n e^{-\tau x R_n^\alpha})| \leq |\phi((u_n e^{-\tau x R_n^\alpha})_N)| + |\phi((u_n e^{-\tau x R_n^\alpha})_p)|.
\]
Since \(\|(u_n)_p\| = O(1) \) \((n \to \infty) \) by \((1) \) in the lemma and \(\|(e^{-\tau x R_n^\alpha})_p\| = 1 \), we have
\[
|\phi((u_n e^{-\tau x R_n^\alpha})_p)| \leq \|\phi\| \|(u_n e^{-\tau x R_n^\alpha})_p\|
\]
\[
\leq \|\phi\| \|(u_n)_p\| \|(e^{-\tau x R_n^\alpha})_p\| = O(1) \quad (n \to \infty).
\]
Moreover, we will claim that \(\phi((u_n e^{-\tau x R_n^\alpha})_N) = O(1) \) \((n \to \infty) \). By \((1) \) again, we have
\[
\|(u_n e^{-\tau x R_n^\alpha})_N\| \leq C \left(\sup_{-1/n \leq x \leq 0} |u_n(x)e^{-\tau x R_n^\alpha(x)}| \right.
\]
\[
\left. + n^{-q} \sup_{-1/n \leq x \leq 0} \left| \left(\frac{d}{dx} \right)^q u_n(x)e^{-\tau x R_n^\alpha(x)} \right| \right).
\]
We have that
\[
\left(\frac{d}{dx} \right)^j u_n(x) R_n^\alpha(x) = \sum_{k=0}^{j} j C_k n^{j-k} u_1^{(j-k)}(nx) \\
\times \frac{(-1)^k \Gamma(n+1) \Gamma(\alpha+k+1)}{\Gamma(\alpha+1) \Gamma(n+\alpha+1)} L_{n-k}^{\alpha+k}(x), \quad j = 0, 1, 2, \ldots.
\]

By Perron’s formula in the complex domain (see [7, (8.22.3)]), we have
\[
\sup_{-1/n \leq x \leq 0} \left| \left(\frac{d}{dx} \right)^j u_n(x) R_n^\alpha(x) \right| = O(n^j) \quad (n \to \infty), \quad j = 0, 1, 2, \ldots,
\]
and thus we have \(\|u_n e^{-\tau x} R_n^\alpha\| = O(1) \quad (n \to \infty)\). Since
\[
|\phi(u_n e^{-\tau x} R_n^\alpha)| \leq \|\phi\| \|u_n e^{-\tau x} R_n^\alpha\|,
\]
we have the claim \(\phi(u_n e^{-\tau x} R_n^\alpha) = O(1) \quad (n \to \infty)\). Therefore, we have
\[
\Phi_\pm(u_n e^{-\tau x} R_n^\alpha) = O(1) \quad (n \to \infty).
\]

On the other hand, we have
\[
\Phi_\pm(u_n e^{-\tau x} R_n^\alpha) = \sum_{j=0}^{q} a_j^\pm \delta_0^{(j)}(u_n e^{-\tau x} R_n^\alpha)
\]
\[
= \sum_{j=0}^{q} a_j^\pm (-\tau)^{-j} \sum_{k=0}^{j} j C_k r^k \frac{n(n-1) \cdots (n-k+1)}{(\alpha+1)^k}.
\]

This implies that, if \(a_j^\pm \neq 0\) for some \(j > 0\), then
\[
\lim_{n \to \infty} |\Phi_\pm(u_n e^{-\tau x} R_n^\alpha)| = \infty.
\]

Thus we have that \(a_j^\pm = 0\) for \(j > 0\), and therefore we have that \(\phi(f_P)\) is of the form
\[
\phi(f_P) = (\Phi_+(f) + \Phi_-(f))/2
\]
\[
= \left\{ \begin{array}{ll}
\sum_{j=0}^{p} a_j \delta_{x_0}^{(j)}(f), & p \leq \alpha + 1/2 \quad (x_0 > 0), \\
a_0 \delta_{x_0}(f), & (x_0 = 0)
\end{array} \right.
\]
for \(f\) in \(D(-\infty, \infty)\). From (2) and (3) in the lemma and \(|f(0)| \leq \|f\|\), it follows that \(\phi\) is of the form \((\star)\). Q.E.D.

REFERENCES

DEPARTMENT OF MATHEMATICS, COLLEGE OF LIBERAL ARTS, KANAZAWA UNIVERSITY, KANAZAWA 920, JAPAN