k-TO-1 FUNCTIONS ON ARCS FOR k EVEN

JO W. HEATH

ABSTRACT. For exactly k-to-1 functions from [0,1] into [0,1]:
(1) at least one discontinuity is required (Harrold),
(2) if k = 2, then infinitely many discontinuities are needed, for any Hausdorff
image space (Heath),
(3) if k = 4, or if k is odd, then there is such a function with only one
discontinuity (Katsuura and Kellum),
and, it is shown here that
(4) if k is even and k > 4, then there is such a function with only two
discontinuities, and no such function exists with fewer discontinuities.

I. Introduction. A function is k-to-1 if each point inverse has exactly k elements,
and it is at most k-to-1 if each point inverse has at most k elements.

Over 45 years ago, O. G. Harrold, Jr. proved in [2] that there is no continuous
k-to-1 map from [0,1] into [0,1]. In a recent paper [4], H. Katsuura and K. Kellum
demonstrate that for each odd positive integer k, and for k = 4, there is a k-to-1
function from [0,1] into [0,1] with exactly one discontinuity. They ask what is the
minimum number of discontinuities for k-to-1 functions from [0,1] into [0,1] with k
even. In [3] the author showed that any 2-to-1 function from [0,1] to a Hausdorff
space requires infinitely many discontinuities. Thus only even numbers greater than
4 need be considered. Theorems 1 and 2 answer the question raised by Katsuura and
Kellum for even integers at least 6:

THEOREM 1. If f: [0,1] —> [0,1] is a k-to-1 function and k is an even integer with
k > 4, then f has at least two discontinuities.

THEOREM 2. If k is an even integer greater than 4 then there is a k-to-1 function
from [0,1] into [0,1] with only two discontinuities.

II. Proof of Theorem 1.

LEMMA 1. Suppose f: (0,1) —> (0,1) is a continuous map at most k-to-1, p is in
(0,1), and d is a positive number. Then there is a number x with x < p and
|x - p| < d such that:
1. either f((x, p)) ⊆ (f(x), f(p)), or f((x, p)) ⊆ (f(p), f(x)), and
2. if \(I \) is any subinterval of \((0,1)\) between \(f(x) \) and \(f(p) \), then there is a subinterval \(J \) of \(I \) such that every horizontal line \(\{ y = c \} \) with \(c \) in \(J \) intersects the graph of \(f \) between \(x \) and \(p \) an odd number of times.

Proof. Since \(f^{-1}(f(p)) \) is finite, there is a positive number \(d' < d \) such that no point within \(d' \) of \(p \) maps to \(f(p) \) except \(p \). Choose any number \(x' \) less than \(p \) so that \(|x' - p| < d' \). The set \(f^{-1}(f(x')) \) is finite so there is an \(x \) with \(x' \leq x < p \) and \(f(x) = f(x') \) such that no point of \((x, p)\) maps to \(f(x') \). Part 1 is true for this \(x \). Note that the part 1 property implies that each point in \((0,1)\) is either a crossing point, a local maximum, or a local minimum for the graph of \(f \).

Now suppose part 2 is false and suppose \(f(x) < f(p) \). Then there is an interval \(I \) in \((f(x), f(p))\) such that every subinterval contains a number \(c \) where the line \(\{ y = c \} \) intersects the graph between \(x \) and \(p \) an even number of times. Let \(c_1 \) be such a number in \(I \) and let \(n_1 \) be the even number of times \(\{ y = c_1 \} \) intersects the graph between \(x \) and \(p \). Since the graph goes continuously from \((x, f(x))\) below \(\{ y = c_1 \} \) to \((p, f(p))\) above, an odd number of these intersection points must be crossings, say \(j \) of them. Of the others, \(i \) are local minima and \(m \) are local maxima. Since \(m + i \) is odd, one is larger, say \(m > i \). Part 1 is true for each point in \(f^{-1}(c_1) \) so there is an interval \(I_2 = (t, c_1) \) in \(I \) small enough that if \(c \) is in \(I_2 \) then \(\{ y = c \} \) intersects the graph between \(x \) and \(p \) at least \(j + 2m \) times. From the negation of part 2 there is a number \(c_2 \) in \(I_2 \) such that the cardinality of this intersection is even, say \(n_2 \). Then

\[
n_2 > j + 2m > j + m + i = n_1.
\]

This process can be continued until \(n_a > k \). Since the line \(\{ y = c_a \} \) cannot intersect the graph of an at most \(k \)-to-1 map more than \(k \) times this is a contradiction.

Note 1. Obviously the same properties hold to the right of \(p \).

Note 2. Part 1 is a strengthening of a lemma found in Katsuura and Kellum [4].

Now, to prove Theorem 1, suppose that \(f: [0,1] \to [0,1] \) is a \(k \)-to-1 function, with \(k \) an even integer greater than 4, and \(f \) has only one discontinuity, \(q \).

Claim 1. Without loss of generality it can be assumed that \(f([0,1]) \) is connected.

If \(q = 0 \), then, since \(f([0,1]) \) is connected and \(f(q) = f(x) \) for some \(x \) in \((0,1] \), the image of \(f \) is connected. If \(0 < q < 1 \), the connected sets \(f([0,q]) \) and \(f([q,1]) \) are disjoint, and \(f(q) = f(x) \) for some \(x \) less than \(q \), then \(f \) restricted to \([0,q] \) is also a \(k \)-to-1 function with one discontinuity (Harrold proved there is at least one discontinuity) from \([0, q] \) to \([0,1] \).

Claim 2. Without loss of generality it can be assumed that \(f([0,1]) = (0,1) \).

Since the image is connected it is an interval with or without endpoints. Suppose 0 is in the image of \(f \). One of 0 or 1 is not \(q \), say \(1 \neq q \). Let \(z = 1 \) if \(f(1) = 0 \) and \(z = 0 \) if \(f(1) \neq 0 \). There are \(k \) points that map to 0; \(n \) of them are neither 0, 1, nor \(q \), with \(n > 2 \) since \(k > 5 \). Then \(|f^{-1}(0)| = k \leq n + z + 2 \), where the 2 allows the possibility that \(q \) and 0 are different and both map to 0. Each of the \(n \) points are local minima for \(f \). Since \(f \) restricted to each of \((0,q)\) and \((q,1)\) is continuous and at most \(k \)-to-1, Lemma 1 holds. From part 1 of the lemma used at points of \(f^{-1}(0) \)
there is a number e close to 0 so that the line $\{y = e\}$ intersects the graph of f at least $2n + z$ times. Since it intersects the graph exactly k times the following is true:

$$n + z + 2 \geq k \geq 2n + z,$$

from which it follows that $2 > n$, a contradiction. Therefore 0 is not in the image of f.

Claim 3. The discontinuity q is in $(0,1)$ and the limit of the images of any sequence converging to q from the left is 0 and from the right is 1 (or the other way around). It was proved in Katsuura and Kellum [4] that each limit exists and is either 0 or 1. If both limits were 1, say, then there would be an interval of numbers $(0, e)$ not mapped onto, contradicting the fact that the image of f is $(0, 1)$. For the same reason, since both 0 and 1 limits must be achieved, q must be interior to $[0, 1]$ to have two sides in the domain.

Claim 4. $f(0) = f(1)$. If not, one of them, say $f(1)$, is not equal to $f(q)$. From Lemma 1 there are disjoint intervals $(a_i, b_i), i = 1, 2, \ldots, k - 1$, about the points of $f^{-1}(f(1))$ other than 1 and an interval $(a_k, 1]$ disjoint from the others, that satisfy part 1.

Since points near q map to values near 0 or 1, there is a positive number e so that the e-neighborhood about the line $\{y = f(1)\}$ contains no point of the graph of f whose first coordinate lies outside the intervals (a_i, b_i) and $(a_k, 1)$.

From part 2 of the lemma there are numbers c in $(f(1), f(1) + e)$ and c' in $(f(1) - e, f(1))$ so that if x_i is the point of $f^{-1}(f(1))$ in (a_i, b_i) then

1. if x_i is a crossing point for the graph of f on the line $\{y = f(1)\}$, then both of the lines $\{y = c\}$ and $\{y = c'\}$ intersect the graph of f an odd number of times between a_i and b_i,

2. if x_i is a local minimum (or maximum) for f then the line $\{y = c\}$ (or $\{y = c'\}$) intersects the graph of f an even number of times between a_i and b_i, and the other line $\{y = c'\}$ (or $\{y = c\}$) does not intersect the graph between a_i and b_i, and

3. one of the lines $\{y = c\}$ and $\{y = c'\}$ intersects the graph an odd number of times between a_k and 1 and the other not at all. It will be assumed here that $\{y = c\}$ is the one that intersects the graph over $(a_k, 1]$.

Let $m, n,$ and j denote the number of local maxima, local minima, and crossing points in $f'^{-1}(f(1)) - \{1\}$, respectively. Then

$$|f^{-1}(c)| = k$$

is the sum of m even numbers plus $j + 1$ odd numbers, and

$$|f'^{-1}(c)| = k$$

is the sum of m even numbers and j odd numbers. Since k cannot be both even and odd there is a contradiction.

Claim 5. If Claim 3 is as stated and not the other way around, then $f((0, q)) \subseteq (0, f(0))$, and $f((q, 1)) \subseteq [f(1), 1)$.

Suppose there is a point (a, b) on the graph of f with $0 < a < q$, $f(0) < b$, and b is the largest such value. The inverse of b contains m, say, local maxima points, and the number of crossing points, j, must be odd since they are all greater than q and the graph of f from q to 1 goes from y-coordinates arbitrarily close to 1 near q down to $f(1)$ at 1, and $f(1) < b$. As in Claim 4, there is a number $c' < b$, $c' \neq f(q)$,
close enough to \(b \) that \(|f^{-1}(c')| = k \) is the sum of \(m \) even numbers and \(j \) odd numbers, which is impossible for the even number \(k \).

Claim 6. There is a contradiction.

With the graph of \(f \) to the left of \(q \) below and on \(\{ y = f(0) \} \) and the graph to the right of \(q \) above and on the same line, all of the points (\(m \) of them) of \(f^{-1}(f(0)) \) in \((0, q)\) are local maxima. Again, choose \(c' \) near \(f(0) \) with \(c' < f(0), c' \neq f(q) \), and the line \(\{ y = c' \} \) intersects the graph in \(k \) points, the sum of an odd number, corresponding to the point \((0, f(0))\), plus \(m \) even numbers; a contradiction.

III. Proof of Theorem 2. The construction here is a generalization of an example in [4] which in turn used examples from [1] and [2]. The basic pieces of the graph of the function to be constructed are generalized \(W \)'s and \(M \)'s defined for a given integer \(n \):

(i) Choose \(2n + 1 \) distinct points in \([0,1]\), \(0 = a_0 < a_1 < \cdots < a_{2n} = b \), and define \(W(a_{2t}) = 1 \) and \(W(a_{2t+1}) = 0 \) for relevant \(t \). Denote by \(W(n) \) the piecewise linear extension to \([0,1]\).

(ii) Given an interval \([a, b]\), choose \(2n + 2 \) points \(a = a_0 < a_1 < \cdots < a_{2n+1} = b \), and define \(M(a_{2t}) = a \) and \(M(a_{2t+1}) = b \) for relevant \(t \). Let \(M(a, b, n) \) denote the piecewise linear extension to a function from \([a, b]\) onto \([a, b]\). These basic pieces will be used to describe the basic units \(B(n) \) and \(A(t, n) \) for integers \(t < n \):

(iii) Define the function \(B_1(n) \) from \([0,1]\) to \([0,1]\) by

\[
 B_1(n) = (0,0) + \sum_{i=0}^{\infty} M(2^{-i+1}, 2^{-i}, n).
\]

Get the graph of \(B_2(n) \) by first reflecting the graph of \(B_1(n) \) about the vertical line \(\{ x = .5 \} \) and then about the horizontal line \(\{ y = .5 \} \).

(iv) Divide the rectangle \([0,3] \times [0,2]\) into six unit squares using matrix \(S(i, j) \) notation. In the lower left square, \(S(2,1) \), put the graph of \(B_3(m) \); in \(S(2,2) \) put the graph of \(W(t) \); and in the upper right square, \(S(1,3) \), put the graph of \(B_2(n) \).

Consider the cardinality, \(I(c) \), of the intersection of the line \(\{ y = c \} \) with this composite graph: If \(1 < c < 2 \) then \(I(c) = 2n + 1 \). \(I(1) = m + t + n + 1 \). If \(0 < c < 1 \) then \(I(c) = 2m + 1 + 2t \).

For the interior intersections to be constant, \(2n + 1 = m + t + n + 1 = 2m + 1 + 2t \) is needed, i.e. \(m + t = n \).

Given \(n \) and \(t \), then, set \(m = n - t \) and denote the described function on \([0,3]\) by \(A_1(t, n) \). Denote by \(A_2(t, n) \) the function constructed by reflecting the graph of \(A_1(t, n) \) about the line \(\{ x = 1.5 \} \), and by \(A_3(t, n) \) the function constructed by reflecting the graph of \(A_1(t, n) \) about \(\{ y = 1 \} \).

Finally, since \(k \) is an even integer greater than 4 it can be written as \((2r + 1) + (2s + 1) \) where \(r \) and \(s \) are both positive. Define a continuous function \(g \) from \([0, 12]\) to \([0,4]\) by dividing \([0, 12] \times [0,4]\) into eight \(2 \times 3 \) rectangles. Put \(A_4(r - 1, r) \) in the upper left rectangle \(T(1,1) \), \(A_2(s - 1, s) \) in \(T(1,2) \), \(A_3(r - 1, r) \) in \(T(2,3) \), and \(B_1(s) \) in the lower right rectangle \(T(2,4) \).
The wanted function f will equal g everywhere except at its two discontinuities, $f(3) = 2$ and $f(9) = 2$. The careful reader will agree that every point inverse has k elements.

REFERENCES

2. O. G. Harrold, Jr., Exactly $(k,1)$ transformations on connected linear graphs, Amer. J. Math. 62 (1940), 823–834.

Department of Mathematics, Auburn University, Auburn, Alabama 36849