Nonisomorphic algebraic structures on smooth manifolds
HTML articles powered by AMS MathViewer
- by J. Bochnak and W. Kucharz
- Proc. Amer. Math. Soc. 101 (1987), 424-426
- DOI: https://doi.org/10.1090/S0002-9939-1987-0908641-3
- PDF | Request permission
Abstract:
Given a compact smooth hypersurface $M$ in ${{\mathbf {R}}^{n + 1}}$, we construct a family $\left \{ {{X_k}} \right \},k = 1,2, \ldots$, of nonsingular real algebraic subsets of ${{\mathbf {R}}^{n + 1}}$ such that each ${X_k}$ is isotopic to $M$ but, for $k \ne l,{X_k}$ and ${X_l}$ are not birationally equivalent.References
- Selman Akbulut and Henry King, The topology of real algebraic sets, Knots, braids and singularities (Plans-sur-Bex, 1982) Monogr. Enseign. Math., vol. 31, Enseignement Math., Geneva, 1983, pp. 7–47. MR 728579
- S. Akbulut and H. King, Submanifolds and homology of nonsingular real algebraic varieties, Amer. J. Math. 107 (1985), no. 1, 45–83. MR 778089, DOI 10.2307/2374457
- J. Bochnak, Relèvement des jets, Séminaire Pierre Lelong (Analyse) (année 1970–1971), Lecture Notes in Math., Vol. 275, Springer, Berlin, 1972, pp. 106–118 (French). MR 0377971
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157 D. Mumford, Algebraic geometry. I, Springer-Verlag, Berlin and New York, 1978.
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 101 (1987), 424-426
- MSC: Primary 32B99; Secondary 14G30
- DOI: https://doi.org/10.1090/S0002-9939-1987-0908641-3
- MathSciNet review: 908641