On positive solutions of semilinear elliptic equations
HTML articles powered by AMS MathViewer
- by E. N. Dancer and Klaus Schmitt
- Proc. Amer. Math. Soc. 101 (1987), 445-452
- DOI: https://doi.org/10.1090/S0002-9939-1987-0908646-2
- PDF | Request permission
Abstract:
This paper is concerned with necessary conditions for the existence of positive solutions of the semilinear problem $\Delta u + f(u) = 0,x \in \Omega ,u = 0,x \in \partial \Omega$, whose supremum norm bears a certain relationship to zeros of the nonlinearity $f$. We first discuss the smooth case (i.e., $f$ and $\partial \Omega$ smooth) and then show how to obtain similar results in the nonsmooth case.References
- H. Berestycki and P.-L. Lions, Some applications of the method of super and subsolutions, Bifurcation and nonlinear eigenvalue problems (Proc., Session, Univ. Paris XIII, Villetaneuse, 1978) Lecture Notes in Math., vol. 782, Springer, Berlin, 1980, pp. 16–41. MR 572249
- Philippe Clément and Guido Sweers, Existence et multiplicité des solutions d’un problème aux valeurs propres elliptique semilinéaire, C. R. Acad. Sci. Paris Sér. I Math. 302 (1986), no. 19, 681–683 (French, with English summary). MR 847753
- Chris Cosner and Klaus Schmitt, A priori bounds for positive solutions of a semilinear elliptic equation, Proc. Amer. Math. Soc. 95 (1985), no. 1, 47–50. MR 796444, DOI 10.1090/S0002-9939-1985-0796444-0
- E. N. Dancer, On positive solutions of some pairs of differential equations, Trans. Amer. Math. Soc. 284 (1984), no. 2, 729–743. MR 743741, DOI 10.1090/S0002-9947-1984-0743741-4
- E. N. Dancer, On positive solutions of some pairs of differential equations. II, J. Differential Equations 60 (1985), no. 2, 236–258. MR 810554, DOI 10.1016/0022-0396(85)90115-9 D. DeFigueiredo, On the uniqueness of positive solutions of the Dirichlet problem $- \Delta u = \lambda \sin u$, Nonlinear Partial Differential Equations and Applications, vol. 7 (H. Brezis and J. L. Lions, eds.), Pitman, London, 1984, pp. 80-83. J. Deuel and P. Hess, A criterion for the existence of solutions of nonlinear elliptic boundary value problems, Proc. Roy. Soc. Edinburgh Sect. A 74 (1975), 49-54.
- B. Gidas, Wei Ming Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), no. 3, 209–243. MR 544879
- Peter Hess, On multiple positive solutions of nonlinear elliptic eigenvalue problems, Comm. Partial Differential Equations 6 (1981), no. 8, 951–961. MR 619753, DOI 10.1080/03605308108820200
- David Kinderlehrer and Guido Stampacchia, An introduction to variational inequalities and their applications, Pure and Applied Mathematics, vol. 88, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. MR 567696
- Ezzat S. Noussair, On semilinear elliptic boundary value problems in unbounded domains, J. Differential Equations 41 (1981), no. 3, 334–348. MR 633822, DOI 10.1016/0022-0396(81)90042-5
- Akio Ogata, On existence and multiplicity theorems for semilinear elliptic equations in exterior domains, Funkcial. Ekvac. 27 (1984), no. 3, 281–299. MR 794757
- Klaus Schmitt, Boundary value problems for quasilinear second-order elliptic equations, Nonlinear Anal. 2 (1978), no. 3, 263–309. MR 512661, DOI 10.1016/0362-546X(78)90019-6
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 101 (1987), 445-452
- MSC: Primary 35B05; Secondary 35J65
- DOI: https://doi.org/10.1090/S0002-9939-1987-0908646-2
- MathSciNet review: 908646