Small perturbations and the eigenvalues of the Laplacian on large bounded domains
HTML articles powered by AMS MathViewer
- by Werner Kirsch
- Proc. Amer. Math. Soc. 101 (1987), 509-512
- DOI: https://doi.org/10.1090/S0002-9939-1987-0908658-9
- PDF | Request permission
Abstract:
Denote by $\Delta _L^D$ the Laplacian on a hypercube in ${{\mathbf {R}}^d}$ with side length $\pi L$. Also denote by $N\left ( {\lambda ,A} \right )$ the number of eigenvalues of the operator $A$ below $\lambda$. If $V \geq 0$ is a bounded function of compact support, ($V > 0$ on a set of positive measure) then $N\left ( { - \Delta _L^D,\lambda } \right ) - N\left ( { - \Delta _L^D + V,\lambda } \right )$ is not bounded as $L \to \infty$ for dimension $d > 1$.References
- François Fricker, Einführung in die Gitterpunktlehre, Lehrbücher und Monographien aus dem Gebiete der Exakten Wissenschaften (LMW). Mathematische Reihe [Textbooks and Monographs in the Exact Sciences. Mathematical Series], vol. 73, Birkhäuser Verlag, Basel-Boston, Mass., 1982 (German). MR 673938
- M. Rid and B. Saĭmon, Metody sovremennoĭ matematicheskoĭ fiziki. 1: Funktsional′nyĭ analiz, Izdat. “Mir”, Moscow, 1977 (Russian). Translated from the English by A. K. Pogrebkov and V. N. Suško; With a preface by N. N. Bogoljubov; Edited by M. K. Polivanov. MR 0493422
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 101 (1987), 509-512
- MSC: Primary 35P20; Secondary 35J25, 47F05
- DOI: https://doi.org/10.1090/S0002-9939-1987-0908658-9
- MathSciNet review: 908658