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ABSTRACT. Suppose we are given a fibration p: E —► B over a connected

base, with both base and fibre having the homotopy type of CW complexes.

We construct a fibre bundle over B fibre homotopy equivalent to the given

fibration and with fibre a Simplicia] complex. Further, the transformations

of the fibre arising from the transition functions of this bundle are simplicial

maps. From this, we deduce that the weak spectral sequence constructor ax-

ioms are sufficient to determine the Serre spectral sequence of a CW fibration.

In Barnes [1], it was shown that a certain set of axioms determines the Serre

spectral sequence of a CW fibration. It was conjectured that a weaker set of axioms

would suffice, but this was only proved for simplicial bundles. In this paper, we

extend this to arbitrary CW fibrations by showing how to construct a simplicial

bundle fibre homotopy equivalent to a given CW fibration.

The construction follows those of Milnor [4] and Fadell [3]. In order to ensure

that the space S of simplicial paths in the triangulated space B is a CW complex,

they restricted B to being a countable or locally finite complex. We shall also need

such a space 5 to be a CW complex, but our intended application does not permit

us to impose a finiteness condition on B. Instead, we change the topology on S,

using the compactly generated space k(S) associated with S. (See Steenrod [5].)

This enables us to use Fadell's construction, but we lose the topology on the group

of the bundle. The group G of simplicial loops acts on the fibres, but it is not clear

that it can be topologised so as to satisfy all the requirements for the structure

group of a Steenrod fibre bundle. For convenience, we shall refer to G as the

structure group and call various bundles C?-bundles, but G should be understood

to be a group without topology.

In our construction, we shall make use of a functor s from topological spaces

to simplicial complexes, and of a natural transformation j: s —> identity with the

property that jx : s(X) —► X is a homotopy equivalence whenever X has the ho-

motopy type of a CW complex. Such a functor may be obtained by taking s(X) to

be the second barycentric subdivision of the geometric realisation of the singular

complex of X, with jx the evaluation map.

THEOREM. Suppose B has the homotopy type of a connected CW complex. Then

there exists a group G (not topologised) and a functor B from the category of fibra-

tions over B with fibre having the homotopy type of a CW complex, to the category

of G-bundles over B such that, for each such fibration p: E —* B,

(i) B(p): B(E) —► B is fibre homotopy equivalent to p,
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(ii) the fibre of B (p) is a simplicial complex, and

(iii) G acts on the fibre by simplicial maps.

PROOF. Let p: E —► B be a fibration with some (and hence every) fibre hav-

ing the homotopy type of a CW complex. We proceed in a number of stages,

constructing various auxilliary spaces and fibrations.

Step 1. Replace B with a simplicial complex. Put C = s(B) and form the

pullback jß(p) = q : K —> C of p along the evaluation map js '■ s(B) —► B. Then G

is a simplicial complex and q : K —> C is a fibration whose fibres are of the same

homotopy type as those of p.

E 4-- K

Q=Jb(p)

B <-C = s(B)
JB

Step 2. Replace K —► C with a fibre bundle. We follow the construction of

Fadell [3], amended to allow for C not being locally finite. Let Sn be the set of all

sequences (xn, x„_i,..., xn) £ Cn+1 such that each pair i¿, x¿_i lie in a common

simplex of C. We topologise Sn with the topology induced from k(Cn+1), that is,

from the weak topology on Cn+1 given by the product cells. Let 5* be the disjoint

union of the Sn for n > 1. Let ~ be the equivalence relation in S* generated by

the relations

\Xn, . . . , Xi+i,Xi,Xx — l, • . . , Xq) ~ \Xn, . . . , XiJri,Xjt— i, . . . , Xq)

whenever x¿ = i¿_i or xl+i = %i—\. The space S of simplicial paths in C is

defined to be 5*/~. It follows as in Milnor [4] that S is a CW complex. We

denote the equivalence class of (xn,..., xq) by \xn,..., xq]. For the simplicial path

a — [xn,..., xo], we set a(0) = xr¡ and o(l) = xn.

We now select a vertex v of C. We define G to be the group of simplicial loops

at v. It need not be a topological group. Milnor's argument only shows that

multiplication gives a continuous functions k(G x G) —> G. Thus 67 is a group in

the category of compactly generated spaces. We ignore the topology on G.

We put

L = {(K,a) e K x S | q(K) = a(0)}

with topology induced by the product topology of K x S, and define r(n,a) = a(i).

As in Fadell [3], it follows that r: L —* C is a fibre bundle with structure group (in

our limited sense) G, and that the map A: K —+ L given by X(k) = (k, \q(K,), ?(«;)])

is a fibre homotopy equivalence. Note that Fadell's argument requires that S and

{a € S | a(0) = v} be CW complexes. It does not require L to be a CW complex.

E <- K -►  L

B *- C -► C
3 b ¡d

Step 3. Replace L with a simplicial bundle. We now construct a simplicial bundle

t: M —» C'.  For each c G C, we define Mc = s(Lc) where Lc — r~l(c).  We put
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1(Ua), where

Ua, the map

M = Uc€C Mc and define the function t: M —* C by t(Mc) = c. We still have

to define the topology of M. Now r: L —► C is a bundle. For some covering of

C by open sets Ua, we have coordinate functions <j>a: Ua x F —> r

F is the fibre over the vertex v. Let 3> = s(F). For each c S

4>a,c — <Pa | c x F —► Lc induces a map ?/>aiC = s(</>aiC): c x $ —* Mc. Putting

these together, we have a function ipa: Ua x $ —► i_1(/7a). We define the open

sets of i_1(/7a) to be the images under ipa of the open sets of Ua x $, thus making

ipa a homeomorphism. Since r: L —► C is a bundle, this definition is consistent

on intersections t~1(Ua n f/^) and clearly makes i: M^Ca G-bundle. We have

in effect built up M by patching together pieces Ua x $ using transition functions

^,fl1V,a induced by the (/>^Va. Since L is fibre homotopy equivalent to K, each

fibre Lc has the homotopy type of a CW complex. Thus the evaluation maps

Mc = s(Lc) —* Lc are homotopy equivalences. Taken together, these maps define a

function p: M —> L which, by considering coordinate neighbourhoods Ua, is easily

seen to be continuous. By Fadell [2], p: M —» L is a fibre homotopy equivalence.

E K M

B C
3B id

c c
id

Step 4. Pull back to B. The map jB: C = s(B) —* B is a homotopy equivalence.

We choose a homotopy inverse /: B —♦ C of jB. We define B(p) : B(E) —» B to be

the pullback along / of t : M —» C. Then B(p) is a G-bundle over B.

B
3b

K

C
id

c

M

C

B(E)

B(P)

B
id /

In constructing B(p), we chose a vertex v oí C and a map f:C^>B. These

choices required knowledge only of the base B. We use the same vertex v and map

/ : C —► B for all fibrations over B. Our construction is then clearly functorial, any

map E —» E' of fibrations over ß giving rise to induced maps at all stages of the

construction. On the G-bundles, these maps are clearly G-maps. It is easily seen

that different choices of v and / give rise to naturally equivalent functors. We now

verify the properties (i), (ii) and (iii).

We have t: M —► G fibre homotopy equivalent to jB(p) = q: K —» G. Hence

5(p) = f*(t) is fibre homotopy equivalent to f*jB(p). But jBf ~ id: B —* B.
Thus B (p) is fibre homotopy equivalent to p.

By our construction, the fibre $ = s(F) is a simplicial complex. An element

g € G acts on F giving a homeomorphism g¡r: F —+ F. Since s is a functor to

simplicial complexes, the induced map g$ = s(3f) : $ —* $ is simplicial.    D

A spectral sequence constructor for the Serre spectral sequence is a functor J

from CW fibrations 7r : A —* B to filtered chain complexes satisfying certain axioms.

Two versions of these axioms were discussed in Barnes [1, Chapter XIII]. For the

convenience of the reader, we reproduce the weaker version.
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HOMOTOPY AXIOM. If f,g: it —► 7r' are homotopic, then 1(f) and 1(g) are

homotopic by a chain homotopy of filtration degree at most one. If / and g are fibre

homotopic, then /(/) and 7(g) are homotopic by a chain homotopy of filtration

degree zero.

TOTAL SPACE AXIOM. There is a natural isomorphism r¡: H,7(w) -> H.(A).

EXACTNESS AXIOM. If /: 7T -> 7r' is injective, then 7(f): 7(rr) -+ 7(ir') is

injective and

(7f)(7^) = (7f)(7it)n7p(7r').

EXCISION AXIOM. If /: (7Ti,7ri) —► (tt, 7r') is an inclusion of fibration pairs,

all fibrations over the same base, and the map (Ai,A'x) —* (A, A') of pairs of

total spaces is excisive, then the induced maps Epg7(TTi,-rr'x) —> Epq7(Tr,Ti') are

isomorphisms.

E1 AXIOM. There exists a functor G, from spaces with local coefficients to

chain complexes which defines a local coefficient homology theory, and natural

isomorphisms £.: E107(tt) —► C,(B,H0(Ab)).

FIBRE DIMENSION AXIOM. If Ab is discrete, then Ep-q7(n) = 0 for q ^ 0.

Additivity AXIOM. If 7TQ Ç w, the Aa are open in A, and A is the disjoint

union of the Aa, then 7(ir) = ®Q 7(na).

COROLLARY. Suppose 7,7' satisfy the weak spectral sequence constructor ax-

ioms. Let p: E —> E be a fibration in which B and the fibres p_1(6) have the

homotopy type of CW complexes. Then 7(p) and 7'(p) have equivalent spectral

sequences.

PROOF. By the Additivity Axiom, we need only consider the case where B

is connected. For any constructor, homotopy equivalent fibrations give equivalent

spectral sequences. By the theorem, we may replace p: E —► B by a simplicial

bundle, and the result follows by Barnes [1, Theorems XIII.3.2 and XIII.4.4].    D
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