Some problems on splittings of groups. II
HTML articles powered by AMS MathViewer
- by Sándor Szabó PDF
- Proc. Amer. Math. Soc. 101 (1987), 585-591 Request permission
Abstract:
If $G$ is an additive abelian group, $S$ is a subset of $G,M$ is a set of nonzero integers, and if each element of $G\backslash \left \{ 0 \right \}$ is uniquely expressible in the form $ms$, where $m \in M$ and $s \in S$, then we say that $M$ splits $G$. A splitting is nonsingular if every element of $M$ is relatively prime to the order of $G$; otherwise it is singular. In this paper we discuss the singular splittings of cyclic groups of prime power orders and the direct sum of isomorphic copies of groups.References
- Steven Galovich and Sherman Stein, Splittings of abelian groups by integers, Aequationes Math. 22 (1981), no. 2-3, 249–267. MR 645422, DOI 10.1007/BF02190183
- William Hamaker, Factoring groups and tiling space, Aequationes Math. 9 (1973), 145–149. MR 327551, DOI 10.1007/BF01832620
- W. Hamaker and S. Stein, Splitting groups by integers, Proc. Amer. Math. Soc. 46 (1974), 322–324. MR 349874, DOI 10.1090/S0002-9939-1974-0349874-8
- Sherman Stein, Packings of $\textbf {R}^{n}$ by certain error spheres, IEEE Trans. Inform. Theory 30 (1984), no. 2, 356–363. MR 754866, DOI 10.1109/TIT.1984.1056880
- Dean Hickerson, Splittings of finite groups, Pacific J. Math. 107 (1983), no. 1, 141–171. MR 701813, DOI 10.2140/pjm.1983.107.141
- Dean Hickerson and Sherman Stein, Abelian groups and packing by semicrosses, Pacific J. Math. 122 (1986), no. 1, 95–109. MR 825226, DOI 10.2140/pjm.1986.122.95
- S. K. Stein, Factoring by subsets, Pacific J. Math. 22 (1967), 523–541. MR 219435, DOI 10.2140/pjm.1967.22.523
- Sherman K. Stein, A symmetric star body that tiles but not as a lattice, Proc. Amer. Math. Soc. 36 (1972), 543–548. MR 319058, DOI 10.1090/S0002-9939-1972-0319058-6
- S. K. Stein, Algebraic tiling, Amer. Math. Monthly 81 (1974), 445–462. MR 340063, DOI 10.2307/2318582 —, Packing of ${R^n}$ by certain error spheres, IEEE Trans. Inform. Theory IT-30 (1984), 356-363.
- S. Stein, Lattice-tiling by certain star bodies, Studia Sci. Math. Hungar. 20 (1985), no. 1-4, 71–76. MR 886008
- Sherman Stein, Tiling, packing, and covering by clusters, Rocky Mountain J. Math. 16 (1986), no. 2, 277–321. MR 843054, DOI 10.1216/RMJ-1986-16-2-277
- S. Szabó, A bound of $k$ for tiling by $(k,\,n)$ crosses and semicrosses, Acta Math. Hungar. 44 (1984), no. 1-2, 97–99. MR 759037, DOI 10.1007/BF01974106
- Sándor Szabó, Some problems on splittings of groups, Aequationes Math. 30 (1986), no. 1, 70–79. MR 837041, DOI 10.1007/BF02189912
Additional Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 101 (1987), 585-591
- MSC: Primary 20K01; Secondary 05B40, 05B45
- DOI: https://doi.org/10.1090/S0002-9939-1987-0911013-9
- MathSciNet review: 911013