Characters of $p$-groups
HTML articles powered by AMS MathViewer
- by Charles E. Ford PDF
- Proc. Amer. Math. Soc. 101 (1987), 595-601 Request permission
Abstract:
The following theorem is proved for any prime $p$: Every irreducible rational represention of a finite $p$-group is the difference of two transitive permutation representations. Also given are two useful results about representations of $p$-groups, which are known to experts in the field.References
- Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0144979
- Walter Feit, Characters of finite groups, W. A. Benjamin, Inc., New York-Amsterdam, 1967. MR 0219636
- Charles Ford, Some results on the Schur index of a representation of a finite group, Canadian J. Math. 22 (1970), 626–640. MR 260891, DOI 10.4153/CJM-1970-069-3
- Daniel Gorenstein, Finite groups, 2nd ed., Chelsea Publishing Co., New York, 1980. MR 569209
- Tsit-yuen Lam, Artin exponent of finite groups, J. Algebra 9 (1968), 94–119. MR 224705, DOI 10.1016/0021-8693(68)90007-0
- Graeme Segal, Permutation representations of finite $p$-groups, Quart. J. Math. Oxford Ser. (2) 23 (1972), 375–381. MR 322041, DOI 10.1093/qmath/23.4.375
- Louis Solomon, The representation of finite groups in algebraic number fields, J. Math. Soc. Japan 13 (1961), 144–164. MR 143822, DOI 10.2969/jmsj/01320144
- Ernst Witt, Die algebraische Struktur des Gruppenringes einer endlichen Gruppe über einem Zahlkörper, J. Reine Angew. Math. 190 (1952), 231–245 (German). MR 53944, DOI 10.1515/crll.1952.190.231
- Toshihiko Yamada, Characterization of the simple components of the group algebras over the $p$-adic number field, J. Math. Soc. Japan 23 (1971), 295–310. MR 279210, DOI 10.2969/jmsj/02320295
Additional Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 101 (1987), 595-601
- MSC: Primary 20C15
- DOI: https://doi.org/10.1090/S0002-9939-1987-0911015-2
- MathSciNet review: 911015