Integer parts of powers of quadratic units
HTML articles powered by AMS MathViewer
- by Daniel Cass PDF
- Proc. Amer. Math. Soc. 101 (1987), 610-612 Request permission
Abstract:
Let $\alpha > 1$ be a unit in a quadratic field. The integer part of ${\alpha ^n}$, denoted $[{\alpha ^n}]$, is shown to be composite infinitely often. Provided $\alpha \ne (1 + \sqrt 5 )/2$, it is shown that the number of primes among $[\alpha ],[{\alpha ^2}], \ldots ,[{\alpha ^n}]$ is bounded by a function asymptotic to $c \cdot {\log ^2}n$, with $c = 1/(2\log 2 \cdot \log 3)$.References
- W. Forman and H. N. Shapiro, An arithmetic property of certain rational powers, Comm. Pure Appl. Math. 20 (1967), 561–573. MR 211977, DOI 10.1002/cpa.3160200305
Additional Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 101 (1987), 610-612
- MSC: Primary 11R11; Secondary 11B05, 11R27
- DOI: https://doi.org/10.1090/S0002-9939-1987-0911018-8
- MathSciNet review: 911018