$k$-to-$1$ functions on an arc
HTML articles powered by AMS MathViewer
- by Hidefumi Katsuura and Kenneth R. Kellum PDF
- Proc. Amer. Math. Soc. 101 (1987), 629-633 Request permission
Abstract:
Recently Jo W. Heath [6] has shown that any $2$-to-$1$ function from an arc onto a Hausdorff space must have infinitely many discontinuities. Here we investigate extending Heathβs result to $k$-to-$1$ functions for $k > 2$. Examples show that in general Heathβs theorem cannot be extended even for functions from an arc into itself. However, if $f$ is a $k$-to-$1$ function $(k \geq 2)$ from an arc onto an arc, then we prove that $f$ has infinitely many discontinuities.References
- Karol Borsuk and R. Molski, On a class of continuous mappings, Fund. Math. 45 (1957), 84β98. MR 102063, DOI 10.4064/fm-45-1-84-98
- Paul Civin, Two-to-one mappings of manifolds, Duke Math. J. 10 (1943), 49β57. MR 8697
- Paul W. Gilbert, $n$-to-one mappings of linear graphs, Duke Math. J. 9 (1942), 475β486. MR 7106
- O. G. Harrold Jr., The non-existence of a certain type of continuous transformation, Duke Math. J. 5 (1939), 789β793. MR 1358
- O. G. Harrold Jr., Exactly $(k,1)$ transformations on connected linear graphs, Amer. J. Math. 62 (1940), 823β834. MR 2554, DOI 10.2307/2371492
- Jo Heath, Every exactly $2$-to-$1$ function on the reals has an infinite set of discontinuities, Proc. Amer. Math. Soc. 98 (1986), no.Β 2, 369β373. MR 854049, DOI 10.1090/S0002-9939-1986-0854049-8
- Venable Martin and J. H. Roberts, Two-to-one transformations on 2-manifolds, Trans. Amer. Math. Soc. 49 (1941), 1β17. MR 4129, DOI 10.1090/S0002-9947-1941-0004129-9
- J. Mioduszewski, On two-to-one continuous functions, Rozprawy Mat. 24 (1961), 43. MR 145490
- Sam B. Nadler Jr. and L. E. Ward Jr., Concerning exactly $(n,\,1)$ images of continua, Proc. Amer. Math. Soc. 87 (1983), no.Β 2, 351β354. MR 681847, DOI 10.1090/S0002-9939-1983-0681847-3
- J. H. Roberts, Two-to-one transformations, Duke Math. J. 6 (1940), 256β262. MR 1923, DOI 10.1215/S0012-7094-40-00620-2
Additional Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 101 (1987), 629-633
- MSC: Primary 54C10; Secondary 54C30, 54F15
- DOI: https://doi.org/10.1090/S0002-9939-1987-0911022-X
- MathSciNet review: 911022