Almost everywhere divergence of multiple Walsh-Fourier series
HTML articles powered by AMS MathViewer
- by David C. Harris PDF
- Proc. Amer. Math. Soc. 101 (1987), 637-643 Request permission
Abstract:
C. Fefferman [1, 2, 3] has shown that the multiple Fourier series of an $f \in {L^p},p < 2$, may diverge a.e. when summed over expanding spheres, but converges a.e. when summed over expanding polyhedral surfaces. We show this dichotomy does not prevail for multiple Walsh-Fourier series.References
- Charles Fefferman, Inequalities for strongly singular convolution operators, Acta Math. 124 (1970), 9–36. MR 257819, DOI 10.1007/BF02394567
- Charles Fefferman, The multiplier problem for the ball, Ann. of Math. (2) 94 (1971), 330–336. MR 296602, DOI 10.2307/1970864
- Charles Fefferman, On the convergence of multiple Fourier series, Bull. Amer. Math. Soc. 77 (1971), 744–745. MR 435724, DOI 10.1090/S0002-9904-1971-12793-3
- N. J. Fine, On the Walsh functions, Trans. Amer. Math. Soc. 65 (1949), 372–414. MR 32833, DOI 10.1090/S0002-9947-1949-0032833-2
- Walter Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, No. 12, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0152834
- E. M. Stein, On limits of seqences of operators, Ann. of Math. (2) 74 (1961), 140–170. MR 125392, DOI 10.2307/1970308
- Wo Sang Young, A note on Walsh-Fourier series, Proc. Amer. Math. Soc. 59 (1976), no. 2, 305–310. MR 410247, DOI 10.1090/S0002-9939-1976-0410247-2
- A. Zygmund, Trigonometric series. Vol. I, II, Cambridge University Press, Cambridge-New York-Melbourne, 1977. Reprinting of the 1968 version of the second edition with Volumes I and II bound together. MR 0617944
Additional Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 101 (1987), 637-643
- MSC: Primary 42C10
- DOI: https://doi.org/10.1090/S0002-9939-1987-0911024-3
- MathSciNet review: 911024