Matrix methods and the property of stretchings
HTML articles powered by AMS MathViewer
- by T. A. Keagy
- Proc. Amer. Math. Soc. 101 (1987), 667-670
- DOI: https://doi.org/10.1090/S0002-9939-1987-0911030-9
- PDF | Request permission
Abstract:
D. F. Dawson has proved that if $x$ is a sequence and $A$ is a matrix with convergent row sums, then there exist a stretching $z$ of $x$ and a row finite matrix $B$ such that $Ay$ and $By$ converge or diverge together for each stretching $y$ of $z$. An extension of this result is used to answer a question proposed by D. Gaier regarding the conditions necessary for a matrix $A$ to have the property that if $x$ is a sequence with finite limit point $t$, then $A$ sums a stretching of $x$ to $t$.References
- David F. Dawson, A Tauberian theorem for stretchings, J. London Math. Soc. (2) 13 (1976), no. 1, 27–33. MR 404918, DOI 10.1112/jlms/s2-13.1.27
- Vladimir Drobot, On the dilution of series, Ann. Polon. Math. 30 (1975), no. 3, 323–331. MR 382906, DOI 10.4064/ap-30-3-323-331
- D. Gaier, Limitierung gestreckter Folgen, Publ. Ramanujan Inst. 1 (1968/69), 223–234 (German). MR 268568
- John R. Isbell, On dilution and Cesàro summation, Proc. Amer. Math. Soc. 45 (1974), 397–400. MR 350250, DOI 10.1090/S0002-9939-1974-0350250-2
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 101 (1987), 667-670
- MSC: Primary 40C05
- DOI: https://doi.org/10.1090/S0002-9939-1987-0911030-9
- MathSciNet review: 911030