Baire category and $B_ r$-spaces
HTML articles powered by AMS MathViewer
- by Dominikus Noll PDF
- Proc. Amer. Math. Soc. 101 (1987), 671-678 Request permission
Abstract:
A topological space satisfying the open mapping theorem is called a ${B_r}$-space. We investigate the question whether completely regular ${B_r}$-spaces must be Baire spaces. The answer we obtain is twofold and surprising. On the one hand there exist first category completely regular ${B_r}$-spaces. Examples are provided in the class of Lindelöf $P$-spaces. On the other hand, we obtain a partial positive answer to our question. We prove that every suborderable metrizable ${B_r}$-space is in fact a Baire space. We conjecture that this is true for metrizable ${B_r}$-spaces in general. Our paper is completed by some applications. For instance, we establish the existence of a metrizable ${B_r}$-space $E$ whose square $E \times E$ is no longer a ${B_r}$-space.References
- T. Byczkowski and R. Pol, On the closed graph and open mapping theorems, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), no. 9, 723–726 (English, with Russian summary). MR 423286
- Douglas E. Cameron, Maximal and minimal topologies, Trans. Amer. Math. Soc. 160 (1971), 229–248. MR 281142, DOI 10.1090/S0002-9947-1971-0281142-7
- Ryszard Engelking, Topologia ogólna, Państwowe Wydawnictwo Naukowe, Warsaw, 1975 (Polish). Biblioteka Matematyczna, Tom 47. [Mathematics Library. Vol. 47]. MR 0500779
- W. G. Fleissner and K. Kunen, Barely Baire spaces, Fund. Math. 101 (1978), no. 3, 229–240. MR 521125, DOI 10.4064/fm-101-3-229-240
- Douglass L. Grant, Topological groups which satisfy an open mapping theorem, Pacific J. Math. 68 (1977), no. 2, 411–423. MR 466395, DOI 10.2140/pjm.1977.68.411
- Gottfried Köthe, Topological vector spaces. II, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 237, Springer-Verlag, New York-Berlin, 1979. MR 551623, DOI 10.1007/978-1-4684-9409-9
- D. J. Lutzer, On generalized ordered spaces, Dissertationes Math. (Rozprawy Mat.) 89 (1971), 32. MR 324668
- Dominik Noll, Open mapping theorems in topological spaces, Czechoslovak Math. J. 35(110) (1985), no. 3, 373–384. MR 803032, DOI 10.21136/CMJ.1985.102027
- Dominikus Noll, Sums and products of $B_r$ spaces, Pacific J. Math. 123 (1986), no. 1, 173–188. MR 834146, DOI 10.2140/pjm.1986.123.173
- L. J. Sulley, A note on $B$- and $B_{r}$-complete topological Abelian groups, Proc. Cambridge Philos. Soc. 66 (1969), 275–279. MR 248272, DOI 10.1017/s0305004100044960
- Manuel Valdivia, $B_{r}$-complete spaces which are not $B$-complete, Math. Z. 185 (1984), no. 2, 253–259. MR 731346, DOI 10.1007/BF01181696
- J. D. Weston, On the comparison of topologies, J. London Math. Soc. 32 (1957), 342–354. MR 94776, DOI 10.1112/jlms/s1-32.3.342
Additional Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 101 (1987), 671-678
- MSC: Primary 54C10; Secondary 46A30
- DOI: https://doi.org/10.1090/S0002-9939-1987-0911031-0
- MathSciNet review: 911031