Generalizations of the Sidon-Telyakovskiĭ theorem
HTML articles powered by AMS MathViewer
- by Časlav V. Stanojević and Vera B. Stanojevic PDF
- Proc. Amer. Math. Soc. 101 (1987), 679-684 Request permission
Abstract:
The well-known Sidon-Telyakovskii integrability condition is considerably lightened as follows: \[ \frac {1}{n}\sum \limits _{k = 1}^n {\frac {{|\Delta c(k){|^p}}}{{A_k^p}} = O(1),\quad n \to \infty } ,\] where $\{ c(n)\}$ is a certain null-sequence and $1 < p \leq 2$. It is proved that $\sum \nolimits _{n = 1}^\infty {{n^{p - 1}}|\Delta c(n){|^p}{\rho ^p}(n) < \infty }$ is also a sufficient integrability condition provided $\sum \nolimits _{n = 1}^\infty {(1/n\rho (n)) < \infty }$, where $\{ \rho (n)\}$ is an increasing sequence of positive numbers.References
-
S. A. Telyakovskii, On a sufficient condition of Sidon for the integrability of trigonometric series, Math. Notes 14 (1973), 742-748.
S. Sidon, Hinreichende Bedingungen für den Fourier Charakter einer Trigonometrischen Reihe, London Math. Soc. (2) 14 (1939), 158-160.
- John W. Garrett and Časlav V. Stanojević, On $L^{1}$ convergence of certain cosine sums, Bull. Amer. Math. Soc. 82 (1976), no. 1, 129–130. MR 394001, DOI 10.1090/S0002-9904-1976-13990-0
- John W. Garrett and Časlav V. Stanojević, Necessary and sufficient conditions for $L^{1}$ convergence of trigonometric series, Proc. Amer. Math. Soc. 60 (1976), 68–71 (1977). MR 425480, DOI 10.1090/S0002-9939-1976-0425480-3
- William O. Bray and Časlav V. Stanojević, Tauberian $L^{1}$-convergence classes of Fourier series. I, Trans. Amer. Math. Soc. 275 (1983), no. 1, 59–69. MR 678336, DOI 10.1090/S0002-9947-1983-0678336-3
- G. A. Fomin, A class of trigonometric series, Mat. Zametki 23 (1978), no. 2, 213–222 (Russian). MR 487218
Additional Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 101 (1987), 679-684
- MSC: Primary 42A20; Secondary 42A32
- DOI: https://doi.org/10.1090/S0002-9939-1987-0911032-2
- MathSciNet review: 911032