On the uniqueness of a minimal norm representative of an operator in the commutant of the compressed shift
HTML articles powered by AMS MathViewer
- by Ciprian Foias and Allen Tannenbaum PDF
- Proc. Amer. Math. Soc. 101 (1987), 687-692 Request permission
Abstract:
In this note we give a new criterion guaranteeing the uniqueness of a minimal norm representative of a bounded linear operator which commutes with a finite multiplicity shift. We moreover give examples which show that if the hypotheses of our theorem are violated then the minimal norm representative may not be unique.References
- V. M. Adamjan, D. Z. Arov, and M. G. Kreĭn, Infinite Hankel matrices and generalized Carathéodory-Fejér and I. Schur problems, Funkcional. Anal. i Priložen. 2 (1968), no. 4, 1–17 (Russian). MR 0636333 —, Analytic properties of Schmidt pairs for a Hankel operator and the generalized Schur-Takagi problem, Math. USSR Sb. 15 (1971), 31-73.
- Grigore Arsene and Zoia Ceauşescu, On intertwining dilations. IV, Tohoku Math. J. (2) 30 (1978), no. 3, 423–438. MR 509024, DOI 10.2748/tmj/1178229978
- C. Foiaş and W. Mlak, The extended spectrum of completely non-unitary contractions and the spectral mapping theorem, Studia Math. 26 (1966), 239–245. MR 200722, DOI 10.4064/sm-26-3-239-245
- Ciprian Foias and Allen Tannenbaum, On the Nehari problem for a certain class of $L^\infty$-functions appearing in control theory, J. Funct. Anal. 74 (1987), no. 1, 146–159. MR 901235, DOI 10.1016/0022-1236(87)90043-7
- Ciprian Foias, Allen Tannenbaum, and George Zames, Sensitivity minimization for arbitrary SISO distributed plants, Systems Control Lett. 8 (1987), no. 3, 189–195. MR 877085, DOI 10.1016/0167-6911(87)90026-0
- Ciprian Foias, Allen Tannenbaum, and George Zames, Weighted sensitivity minimization for delay systems, IEEE Trans. Automat. Control 31 (1986), no. 8, 763–766. MR 848674, DOI 10.1109/TAC.1986.1104398
- Ciprian Foias, Allen Tannenbaum, and George Zames, On the $H^\infty$-optimal sensitivity problem for systems with delays, SIAM J. Control Optim. 25 (1987), no. 3, 686–705. MR 885192, DOI 10.1137/0325038
- Ciprian Foias, Allen Tannenbaum, and George Zames, On decoupling the $H^\infty$-optimal sensitivity problem for products of plants, Systems Control Lett. 7 (1986), no. 4, 239–245. MR 850441, DOI 10.1016/0167-6911(86)90036-8
- Bruce A. Francis and John C. Doyle, Linear control theory with an $H_\infty$ optimality criterion, SIAM J. Control Optim. 25 (1987), no. 4, 815–844. MR 893986, DOI 10.1137/0325046
- N. K. Nikol′skiĭ, Treatise on the shift operator, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 273, Springer-Verlag, Berlin, 1986. Spectral function theory; With an appendix by S. V. Hruščev [S. V. Khrushchëv] and V. V. Peller; Translated from the Russian by Jaak Peetre. MR 827223, DOI 10.1007/978-3-642-70151-1
- Donald Sarason, Generalized interpolation in $H^{\infty }$, Trans. Amer. Math. Soc. 127 (1967), 179–203. MR 208383, DOI 10.1090/S0002-9947-1967-0208383-8
- Béla Sz.-Nagy and Ciprian Foiaş, Dilatation des commutants d’opérateurs, C. R. Acad. Sci. Paris Sér. A-B 266 (1968), A493–A495 (French). MR 236755 —, Harmonic analysis of operators on Hilbert space, North-Holland, Amsterdam, 1970.
- Allen Tannenbaum, Invariance and system theory: algebraic and geometric aspects, Lecture Notes in Mathematics, vol. 845, Springer-Verlag, Berlin-New York, 1981. MR 611155
- G. Zames, Feedback and optimal sensitivity: model reference transformations, multiplicative seminorms, and approximate inverses, IEEE Trans. Automat. Control 26 (1981), no. 2, 301–320. MR 613539, DOI 10.1109/TAC.1981.1102603
Additional Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 101 (1987), 687-692
- MSC: Primary 47A20; Secondary 47A45
- DOI: https://doi.org/10.1090/S0002-9939-1987-0911034-6
- MathSciNet review: 911034