More quasireflexive subspaces
HTML articles powered by AMS MathViewer
- by Steven F. Bellenot
- Proc. Amer. Math. Soc. 101 (1987), 693-696
- DOI: https://doi.org/10.1090/S0002-9939-1987-0911035-8
- PDF | Request permission
Abstract:
It is shown that nonreflexive Banach spaces with a separable dual and the boundedly complete skipped blocking property have quasi-reflexive subspaces. In particular, Bourgainโs somewhat reflexive ${\mathfrak {L}_\infty }$-spaces and Polish Banach spaces are somewhat quasi-reflexive.References
- Steven F. Bellenot, Somewhat quasireflexive Banach spaces, Ark. Mat. 22 (1984), no.ย 2, 175โ183. MR 765410, DOI 10.1007/BF02384379
- Jean Bourgain, New classes of ${\cal L}^{p}$-spaces, Lecture Notes in Mathematics, vol. 889, Springer-Verlag, Berlin-New York, 1981. MR 639014
- J. Bourgain and F. Delbaen, A class of special ${\cal L}_{\infty }$ spaces, Acta Math. 145 (1980), no.ย 3-4, 155โ176. MR 590288, DOI 10.1007/BF02414188
- G. A. Edgar and R. F. Wheeler, Topological properties of Banach spaces, Pacific J. Math. 115 (1984), no.ย 2, 317โ350. MR 765190, DOI 10.2140/pjm.1984.115.317
- N. Ghoussoub and B. Maurey, $G_\delta$-embeddings in Hilbert space, J. Funct. Anal. 61 (1985), no.ย 1, 72โ97. MR 779739, DOI 10.1016/0022-1236(85)90039-4
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 92, Springer-Verlag, Berlin-New York, 1977. Sequence spaces. MR 0500056, DOI 10.1007/978-3-642-66557-8 H. P. Rosenthal, Weak*-Polish Banach spaces,
- M. Valdivia, On a class of Banach spaces, Studia Math. 60 (1977), no.ย 1, 11โ13. MR 430755, DOI 10.4064/sm-60-1-11-13
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 101 (1987), 693-696
- MSC: Primary 46B10; Secondary 46B20
- DOI: https://doi.org/10.1090/S0002-9939-1987-0911035-8
- MathSciNet review: 911035