Strong limit theorems for blockwise $m$-dependent and blockwise quasi-orthogonal sequences of random variables
HTML articles powered by AMS MathViewer
- by F. Móricz
- Proc. Amer. Math. Soc. 101 (1987), 709-715
- DOI: https://doi.org/10.1090/S0002-9939-1987-0911038-3
- PDF | Request permission
Abstract:
Let $\{ {X_k}:k = 1,2, \ldots \}$ be a sequence of random variables with zero mean and finite variance $\sigma _k^2$. We say that $\{ {X_k}\}$ is blockwise $m$-dependent if for each $p$ large enough the following is true: if we remove $m$ or more consecutive $X$’s from the dyadic block $\{ {X_{{2^{p - 1}} + 1}}, \ldots ,{X_{{2^p}}}\}$, then the two remaining portions are independent. We say that $\{ {X_k}\}$ is blockwise quasiorthogonal if for each $p$, the expectations $E({X_k}{X_l})$ are small in a certain sense again within the dyadic block $\{ {X_{{2^{p - 1}} + 1}}, \ldots ,{X_{{2^p}}}\}$. Blockwise independence and blockwise orthogonality are particular cases of the above notions, respectively. We study the a.s. behavior of the series $\sum \nolimits _{k = 1}^\infty {{X_k}}$ and that of the first arithmetic means $(1/n)\sum \nolimits _{k = 1}^n {{X_k}}$. It turns out that the classical strong limit theorems, with one exception, remain valid in this more general setting, too.References
- G. Alexits, Convergence problems of orthogonal series, International Series of Monographs in Pure and Applied Mathematics, Vol. 20, Pergamon Press, New York-Oxford-Paris, 1961. Translated from the German by I. Földer. MR 0218827
- Wassily Hoeffding and Herbert Robbins, The central limit theorem for dependent random variables, Duke Math. J. 15 (1948), 773–780. MR 26771
- F. Móricz, Moment inequalities and the strong laws of large numbers, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 35 (1976), no. 4, 299–314. MR 407950, DOI 10.1007/BF00532956
- F. Móricz, The strong laws of large numbers for quasi-stationary sequences, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 38 (1977), no. 3, 223–236. MR 436294, DOI 10.1007/BF00537266
- Pál Révész, The laws of large numbers, Probability and Mathematical Statistics, Vol. 4, Academic Press, New York-London, 1968. MR 0245079
- K. Tandori, Bemerkungen zum Gesetz der großen Zahlen, Period. Math. Hungar. 2 (1972), 33–39 (German). MR 339325, DOI 10.1007/BF02018649
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 101 (1987), 709-715
- MSC: Primary 60F15; Secondary 60G50
- DOI: https://doi.org/10.1090/S0002-9939-1987-0911038-3
- MathSciNet review: 911038