Zero span is a sequential strong Whitney-reversible property
HTML articles powered by AMS MathViewer
- by Akira Koyama PDF
- Proc. Amer. Math. Soc. 101 (1987), 716-720 Request permission
Abstract:
The concept of span of metric spaces was introduced by Lelek [5]. Span is an important concept in regard to chainability of continua. In this paper, motivated by recent results [2, 11], we show that zero span is a sequential strong Whitney-reversible property.References
- James Francis Davis, The equivalence of zero span and zero semispan, Proc. Amer. Math. Soc. 90 (1984), no. 1, 133–138. MR 722431, DOI 10.1090/S0002-9939-1984-0722431-3
- Hisao Kato, Shape properties of Whitney maps for hyperspaces, Trans. Amer. Math. Soc. 297 (1986), no. 2, 529–546. MR 854083, DOI 10.1090/S0002-9947-1986-0854083-2
- J. L. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc. 52 (1942), 22–36. MR 6505, DOI 10.1090/S0002-9947-1942-0006505-8
- Akira Koyama, A note on some strong Whitney-reversible properties, Tsukuba J. Math. 4 (1980), no. 2, 313–316. MR 623444, DOI 10.21099/tkbjm/1496159183
- A. Lelek, Disjoint mappings and the span of spaces, Fund. Math. 55 (1964), 199–214. MR 179766, DOI 10.4064/fm-55-3-199-214
- A. Lelek, On the surjective span and semispan of connected metric spaces, Colloq. Math. 37 (1977), no. 1, 35–45. MR 482680, DOI 10.4064/cm-37-1-35-45
- A. Lelek, The span and the width of continua, Fund. Math. 98 (1978), no. 3, 181–199. MR 494001, DOI 10.4064/fm-98-3-181-199
- Sam B. Nadler Jr., A characterization of locally connected continua by hyperspace retractions, Proc. Amer. Math. Soc. 67 (1977), no. 1, 167–176. MR 458378, DOI 10.1090/S0002-9939-1977-0458378-6
- Sam B. Nadler Jr., Hyperspaces of sets, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 49, Marcel Dekker, Inc., New York-Basel, 1978. A text with research questions. MR 0500811
- Sam B. Nadler Jr., Whitney-reversible properties, Fund. Math. 109 (1980), no. 3, 235–248. MR 597070, DOI 10.4064/fm-109-3-235-248
- Lex G. Oversteegen and E. D. Tymchatyn, On span and weakly chainable continua, Fund. Math. 122 (1984), no. 2, 159–174. MR 753022, DOI 10.4064/fm-122-2-159-174
- L. E. Ward Jr., Extending Whitney maps, Pacific J. Math. 93 (1981), no. 2, 465–469. MR 623577
Additional Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 101 (1987), 716-720
- MSC: Primary 54B20; Secondary 54F20
- DOI: https://doi.org/10.1090/S0002-9939-1987-0911039-5
- MathSciNet review: 911039