A finiteness problem for one-dimensional maps
HTML articles powered by AMS MathViewer
- by W. de Melo PDF
- Proc. Amer. Math. Soc. 101 (1987), 721-727 Request permission
Abstract:
We discuss the connection between the density of structurally stable maps in the space of unimodal maps of the interval, the finiteness of attractors and the nonexistence of wandering intervals. We show that in the space of unimodal maps having an eventually periodic flat critical point, there is a residual subset whose maps have infinitely many sinks. In this space there are also maps having a wandering interval.References
- Dennis Sullivan, Quasiconformal homeomorphisms and dynamics. I. Solution of the Fatou-Julia problem on wandering domains, Ann. of Math. (2) 122 (1985), no. 3, 401–418. MR 819553, DOI 10.2307/1971308
- R. Mañé, P. Sad, and D. Sullivan, On the dynamics of rational maps, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 2, 193–217. MR 732343, DOI 10.24033/asens.1446 Fatou, Sur les équations fonctionnelles, Bull. Soc. Math. France 47 (1919), 161-271; 48 (1920), 33-94; 203-314.
- David Singer, Stable orbits and bifurcation of maps of the interval, SIAM J. Appl. Math. 35 (1978), no. 2, 260–267. MR 494306, DOI 10.1137/0135020
- MichałMisiurewicz, Absolutely continuous measures for certain maps of an interval, Inst. Hautes Études Sci. Publ. Math. 53 (1981), 17–51. MR 623533, DOI 10.1007/BF02698686
- John Guckenheimer, Sensitive dependence to initial conditions for one-dimensional maps, Comm. Math. Phys. 70 (1979), no. 2, 133–160. MR 553966, DOI 10.1007/BF01982351
- Ricardo Mañé, Hyperbolicity, sinks and measure in one-dimensional dynamics, Comm. Math. Phys. 100 (1985), no. 4, 495–524. MR 806250, DOI 10.1007/BF01217727
- Lai Sang Young, A closing lemma on the interval, Invent. Math. 54 (1979), no. 2, 179–187. MR 550182, DOI 10.1007/BF01408935 K. Kuratowski, Topology. II, Academic Press, New York, 1968.
- Glen Richard Hall, A $C^{\infty }$ Denjoy counterexample, Ergodic Theory Dynam. Systems 1 (1981), no. 3, 261–272 (1982). MR 662469, DOI 10.1017/s0143385700001243
- A. N. Sharkovskiĭ and A. F. Ivanov, $C^{\infty }$-mappings of an interval with attracting cycles with arbitrarily large periods, Ukrain. Mat. Zh. 35 (1983), no. 4, 537–539 (Russian). MR 712483 W. De Melo and S. Van Strien, A structure theorem in one dimensional dynamics, preprint IMPA.
Additional Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 101 (1987), 721-727
- MSC: Primary 58F12
- DOI: https://doi.org/10.1090/S0002-9939-1987-0911040-1
- MathSciNet review: 911040