Combinatorial properties for Blackwell sets
HTML articles powered by AMS MathViewer
- by R. M. Shortt PDF
- Proc. Amer. Math. Soc. 101 (1987), 738-742 Request permission
Abstract:
Under the assumption of CH (continuum hypothesis) we produce a strongly Blackwell set whose product with a standard space and whose intersection with an analytic set axe not Blackwell. Previously, such examples were known to exist only under Martin’s Axiom (MA) and not-CH.References
- K. P. S. Bhaskara Rao and B. V. Rao, Borel spaces, Dissertationes Math. (Rozprawy Mat.) 190 (1981), 63. MR 634451
- Włodzimierz Bzyl, On analytic-dense Blackwell sets, Colloq. Math. 56 (1988), no. 1, 85–90. MR 980513, DOI 10.4064/cm-56-1-85-90
- Włodzimierz Bzyl and Jakub Jasiński, A note on Blackwell spaces, Bull. Polish Acad. Sci. Math. 31 (1983), no. 5-8, 215–217 (1984) (English, with Russian summary). MR 750721 D. Fremlin, On Blackwell algebras (preprint).
- Jakub Jasiński, On the combinatorial properties of Blackwell spaces, Proc. Amer. Math. Soc. 93 (1985), no. 4, 657–660. MR 776198, DOI 10.1090/S0002-9939-1985-0776198-4
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751
- Arnold W. Miller, Special subsets of the real line, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 201–233. MR 776624
- R. M. Shortt and K. P. S. Bhaskara Rao, Generalized Lusin sets with the Blackwell property, Fund. Math. 127 (1987), no. 1, 9–39. MR 883149, DOI 10.4064/fm-127-1-9-39
Additional Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 101 (1987), 738-742
- MSC: Primary 54H05; Secondary 03E15, 03E50, 28A05
- DOI: https://doi.org/10.1090/S0002-9939-1987-0911043-7
- MathSciNet review: 911043