Partitioning topological spaces into countably many pieces
HTML articles powered by AMS MathViewer
- by P. Komjáth and W. Weiss PDF
- Proc. Amer. Math. Soc. 101 (1987), 767-770 Request permission
Abstract:
We assume $X \to (\operatorname {top}\omega + 1)_\omega ^1$ and determine which larger $\alpha$ can replace $\omega + 1$. If $X$ is first countable, any countable $\alpha$ can replace $\omega + 1$. If the character of $X$ is ${\omega _1}$, it is consistent and independent whether ${\omega ^2} + 1$ can always replace $\omega + 1$. Consistently ${\omega _1}$ cannot replace $\omega + 1$ for any $X$ of size ${\omega _1}$.References
- Kenneth Kunen, Set theory, Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland Publishing Co., Amsterdam-New York, 1980. An introduction to independence proofs. MR 597342
- William Weiss, Partitioning topological spaces, Mathematics of Ramsey theory, Algorithms Combin., vol. 5, Springer, Berlin, 1990, pp. 154–171. MR 1083599, DOI 10.1007/978-3-642-72905-8_{1}1
Additional Information
- © Copyright 1987 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 101 (1987), 767-770
- MSC: Primary 54A25; Secondary 04A20, 05A17
- DOI: https://doi.org/10.1090/S0002-9939-1987-0911048-6
- MathSciNet review: 911048