RELATION BETWEEN RIGHT AND LEFT INVOLUTIONS
OF A HILBERT ALGEBRA

P. P. SAWOROTNOW

(Communicated by John B. Conway)

ABSTRACT. Existence of a densely defined right involution in a Hilbert algebra implies existence of a left involution.

H^*-algebras were introduced by W. Ambrose [1] to characterize Hilbert-Schmidt operators. This notion was generalized by M. F. Smiley [7], who showed that the structure theorems are valid also for a right H^*-algebra (a Hilbert algebra whose involution $x \rightarrow x^r$ satisfies the condition "$(yx, z) = (y, zx^r)$" but not the condition "$(xy, z) = (y, x^rz)$"). (Hilbert algebra here is a Banach algebra with a Hilbert space norm.) The author showed in [5, Theorem 2] that a proper right H^*-algebra is also a left H^*-algebra, i.e. it also has another involution $x \rightarrow x^l$ (a left involution) which satisfied the condition "$(xy, z) = (y, x^l z)$".

In this paper we shall show that the same is true also for the case when the involution $x \rightarrow x^r$ (the right involution) is defined on a dense subset only.

DEFINITION. Let A be a Hilbert algebra (A is a Banach algebra with a scalar product $(,)$ such that $(x, x) = \|x\|^2$). We shall say that A is a weak right H^*-algebra if there is a dense subset D_r of A with the property that for each $x \in D_r$ there is some x^r such that $(yx, z) = (y, zxr)$ for all $y, z \in A$. We define weak left H^*-algebra in a similar fashion.

The algebra A is said to be proper if each x^r is unique, i.e. A has a right involution $x \rightarrow x^r$, defined on a dense subset. Note that A is proper if $r(A) = \{u \in A: Au = (0)\}$ consists of zero alone. Algebra A in Example 2, p. 54, of [5] is an example of weak right (as well as left) H^*-algebra. Also it is easy to show that each weak right H^*-algebra is a right complemented algebra.

THEOREM. Each proper weak right H^*-algebra A is a proper weak left H^*-algebra.

PROOF. Note that the involution $x \rightarrow x^r$ of A, defined on a dense subset D_r, is closable, i.e. the closure of its graph is a graph of some mapping: it is easy to show that if $x_n \in D^r$, $x_n \rightarrow 0$ and $x^r_n \rightarrow y \in A$, then $y = 0$ (see end of section 8 in §5, Chapter I of [3]).

Now replace the scalar product $(,)$ of A and the multiplication λx of members x of A and complex number λ by $[,]$ and $\lambda \circ x$ respectively, where these new...
products are defined as follows:

\[[x, y] = (y, x), \quad x, y \in A, \]
\[\lambda \circ x = \overline{\lambda x}, \quad \lambda \text{ is a complex number.} \]

Let \(A' \) denote the algebra consisting of members of \(A \) but with these new operations. Note that \(A' \) is also a weak right \(H^* \)-algebra.

Let \(T': A \to A \) be a mapping defined by \(T'x = x^r \) and let \(T \) be the closed extension of \(T' \) (we remarked above that the map \(x \to x^r \) is closable). It follows from II in section 9 of §5 in Chapter I of [3], that \(T \) has an adjoint \(T^* \) defined on a dense subset \(D_1 \) of \(A' \). We define \(x^l = T^*x \) for each \(x \in D_1 \). It follows that \((x^l, y) = (T^*x, y) = [x, Ty] = (y^r, x) \) for all \(y \in D_r \), from which we see that \((x^l y, z) = (x^l, zy^r) = ((zy^r)^r, x) = (yz^r, x) = (y, xz) \) for all \(y, z \in D_r \) (and each \(x \in D_1 \)).

We leave it to the reader to deduce that \((xy, z) = (y, x^l z) \) for all \(y, z \in A \).

To conclude the paper it is appropriate to comment that, in the presence of semisimplicity of the algebra \(A \), the above Theorem follows from Theorem 2 of [6]. However, semisimplicity of a proper weak right \(H^* \)-algebra would be much more difficult to establish (if it is true at all) than in the case of a right \(H^* \)-algebra. In the latter case it follows from the fact that each ideal (whether closed or not) contains a (right) selfadjoint element (it is easy to show that a selfadjoint element is not a generalized nilpotent).

REFERENCES

DEPARTMENT OF MATHEMATICS, THE CATHOLIC UNIVERSITY OF AMERICA, WASHINGTON, D.C. 20064