ON THE AREA OF THE REGION WHERE
AN ENTIRE FUNCTION IS GREATER THAN ONE

LI-CHIEN SHEN

(Communicated by Paul S. Muhly)

To the memory of Professor Robert L. Long

ABSTRACT. Using Carleman's inequality, we prove that if \(f \) is entire and of finite order \(\rho \geq 1 \), then
\[
\limsup_{r \to \infty} \frac{A(r)}{r^2} \geq \frac{\pi}{2\rho},
\]
where \(A(r) \) is the area of the region \(\{ z : |f(z)| \geq 1 \text{ and } |z| < r \} \).

1. Introduction. In [2], Edrei and Erdös proved the following

THEOREM A. Let \(f \) be an entire function and \(D = \{ z : |f(z)| > B \} \ (B > 0) \). If there exists a positive number \(B \) such that the area of \(D \) is finite, then
\[
\liminf_{r \to \infty} \frac{\ln \ln M(r,f)}{\ln r} \geq 2.
\]

In this brief note, we will establish the following

THEOREM 1. Let \(f \) be an entire function of order \(\rho \), \(1 \leq \rho < \infty \), and let \(A(r) \) denote the area of the region
\[
D_r = \{ z : |f(z)| \geq 1, |z| \leq r \}.
\]
Then
\[
\limsup_{r \to \infty} \frac{A(r)}{r^2} \geq \frac{\pi}{2\rho}.
\]

The method, which is different from that of Edrei and Erdös, is based on Carleman's famous inequality which we are about to introduce.

Let \(D \) be a region on the complex plane. The boundary of \(D \) consists of a finite or infinite number of analytic curves clustering nowhere in the finite complex plane. For any \(r \), \(0 < r < \infty \), we denote by \(D_r \) the part of \(D \) lying in \(|z| < r \). Let \(A_k(r) \) \((k = 1, 2, \ldots, n(r))\) be the arcs of \(|z| = r \) contained in \(D \) and \(r\theta_k(r) \) be their arc lengths. Let \(E = \{ r : |z| = r \text{ is contained wholly in } D \} \) and \(E^c = [0, \infty) - E \). If \(r \in E^c \), we define
\[
\theta(r) = \max_k \theta_k(r).
\]

For the moment, we leave \(\theta(r) \) undefined if \(r \in E \).

We now state the following version of Carleman's inequality due to K. Arima [1, p. 64].

Received by the editors March 27, 1986 and, in revised form, October 20, 1986.
1980 Mathematics Subject Classification (1985 Revision). Primary 30D30; Secondary 30D35.

©1988 American Mathematical Society
0002-9939/88 $1.00 + $.25 per page

68
THEOREM B. Let f be an entire function and D be the region where $|f(z)| > 1$. Let $\theta(r)$ be defined as before for the region D. Then for any $a, 0 < a < 1$, we have

$$\ln \ln M(r, f) > \pi \int_{E^c} \frac{dr}{r \theta(r)} - c,$$

where $E^c = E \cap [1, ar]$ and the constant c depends on a only.

2. New proof of Theorem A. Without loss of generality, we assume $B = 1$. We first choose an $a, 0 < a < 1$ (a will be fixed throughout §§2 and 3). Let $E_r = E \cap [1, ar]$, and define $\theta(r) = 2\pi$ for $r \in E$. Then

$$\pi \int_{E_r} \frac{dt}{t \theta(t)} = \frac{1}{2} \int_{E_r} \frac{dt}{t} \leq \frac{1}{2} \ln ar.$$

From (1.2) and (2.1), we have

$$\pi \int_{1}^{ar} \frac{dt}{t \theta(t)} < \ln \ln M(r, f) + \frac{1}{2} \ln ar + c.$$

By Schwarz’s inequality,

$$(ar - 1)^2 = \left(\int_{1}^{ar} dt \right)^2 \leq \int_{1}^{ar} t \theta(t) dt \cdot \int_{1}^{ar} \frac{dt}{t \theta(t)}.$$

We recall that $A(r) = \text{area of } \{z: |f(z)| \geq 1 \text{ and } |z| \leq r\}$. Clearly

$$\int_{1}^{ar} t \theta(t) dt \leq A(ar).$$

From (2.2), (2.3) and (2.4), we obtain

$$(ar - 1)^2 < (A(ar)/\pi) \left(\ln \ln M(r, f) + \frac{1}{2} \ln ar + c \right).$$

If the area of D is finite, (2.5) clearly implies (1.1). This completes the proof of Theorem A.

3. Proof of Theorem 1. Let

$$\mu = \lim \inf_{r \to \infty} \frac{1}{\ln r} \int_{E_r} \frac{dt}{t}.$$

Then $0 \leq \mu \leq 1$.

We will prove the following proposition which is slightly more general than Theorem 1.

PROPOSITION 1. Let f be an entire function of order $\rho > 0$. Then

$$\lim \sup_{r \to \infty} \frac{A(r)}{\rho^2} \geq \pi \mu + \frac{\pi(1 - \mu)^2}{2 \rho}.$$

PROOF. From Schwarz’s inequality,

$$\left(\int_{E^c} \frac{1}{t} dt \right)^2 \leq \int_{E^c} \frac{\theta(t)}{t^2} dt \cdot \int_{E^c} \frac{1}{t \theta(t)} dt.$$

Combining (3.1) with Carleman’s inequality, we obtain

$$\int_{E^c} \frac{\theta(t)}{t} dt \geq \pi \left(\int_{E^c} \frac{dt}{t} \right)^2 \left(\ln \ln M(r, f) + c \right).$$
We again define $\theta(r) = 2\pi$ for $r \in E$. Then

\[
\int_{E^c} \frac{\theta(t)}{t} \, dt = \int_{1}^{\infty} \frac{\theta(t)}{t} \, dt - \int_{E^c} \frac{\theta(t)}{t} \, dt = \int_{1}^{\infty} \frac{\theta(t)}{t} \, dt - 2\pi \int_{E^c} \frac{dt}{t}.
\]

Let $B(r) = \int_{1}^{r} \theta(t) \, dt$. Clearly, $B(r) \leq A(r)$ for all $r \geq 1$. We therefore have

\[
\int_{1}^{\infty} \frac{\theta(t)}{t} \, dt = \int_{1}^{\infty} \frac{dB(t)}{t^2} = 2 \int_{1}^{\infty} \frac{B(t)}{t^3} \, dt + K(r)
\]

where $K(r) = (B(\infty)/a - 2\pi + 2\pi)$. We note that $B(r)/r^2 < \pi$ for all r. From (3.2), (3.3) and (3.4), we conclude that

\[
K(r) = \frac{2}{\ln r} \int_{1}^{r} \frac{A(t)}{t^3} \, dt \geq \frac{2\pi}{\ln r} \int_{E^c} \frac{dt}{t} + \pi \left(\frac{1}{\ln r} \int_{E^c} \frac{dt}{t} \right)^2 \left(\ln \ln M(r, f) + c \right).
\]

It follows immediately from (3.5) that

\[
\limsup_{r \to \infty} \frac{A(r)}{r^2} \geq \frac{\pi \mu + \pi(1 - \mu)^2}{2\rho}.
\]

This finishes the proof of Proposition 1.

It is easy to verify that, if $\rho > 1$.

\[
\pi \mu + \frac{\pi(1 - \mu)^2}{2\rho} > \frac{\pi}{2\rho}.
\]

Theorem 1 follows from (3.6).

REMARK. From (3.5), we see that if $\rho = 0$, then $\mu = 1$. This yields

\[
\limsup_{r \to \infty} \frac{A(r)}{r^2} = \pi.
\]

We also note that Proposition 1 gives $\mu + (1 - \mu)^2/2\rho \leq 1$ for $0 < \rho < 1$. This provides the following relation for μ and ρ:

\[
1 - \frac{\rho}{2} \leq \mu \leq 1.
\]

We also point out here that the conclusion of Theorem 1 is sharp, as may be seen by considering Mittag-Leffler's function $E_{1/\rho}$.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF FLORIDA, GAINESVILLE, FLORIDA 32611