Random sign embeddings from $l^n_r,\;2 < r < \infty$
Authors:
T. Figiel, W. B. Johnson and G. Schechtman
Journal:
Proc. Amer. Math. Soc. 102 (1988), 102-106
MSC:
Primary 46B25,; Secondary 47B10,47B37,47D30
DOI:
https://doi.org/10.1090/S0002-9939-1988-0915724-1
MathSciNet review:
915724
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Estimates for any ideal norm of a "random sign embedding" from $l_r^n$ into $l_r^m,\;2 < r < \infty$, are given in terms of the corresponding ideal norm of the identity of $l_r^k,\;k = k(n,m,r)$.
- G. Bennett, L. E. Dor, V. Goodman, W. B. Johnson, and C. M. Newman, On uncomplemented subspaces of $L_{p},$ $1<p<2$, Israel J. Math. 26 (1977), no. 2, 178–187. MR 435822, DOI https://doi.org/10.1007/BF03007667
- Chong-Man Cho and William B. Johnson, $M$-ideals and ideals in $L(X)$, J. Operator Theory 16 (1986), no. 2, 245–260. MR 860345
- John Elton, Sign-embeddings of $l^{n}_{1}$, Trans. Amer. Math. Soc. 279 (1983), no. 1, 113–124. MR 704605, DOI https://doi.org/10.1090/S0002-9947-1983-0704605-4
- T. Figiel, J. Lindenstrauss, and V. D. Milman, The dimension of almost spherical sections of convex bodies, Acta Math. 139 (1977), no. 1-2, 53–94. MR 445274, DOI https://doi.org/10.1007/BF02392234
- E. D. Gluskin, A. Pietsch, and J. Puhl, A generalization of Khintchine’s inequality and its application in the theory of operator ideals, Studia Math. 67 (1980), no. 2, 149–155. MR 583295, DOI https://doi.org/10.4064/sm-67-2-149-155
- W. B. Johnson, B. Maurey, G. Schechtman, and L. Tzafriri, Symmetric structures in Banach spaces, Mem. Amer. Math. Soc. 19 (1979), no. 217, v+298. MR 527010, DOI https://doi.org/10.1090/memo/0217
- W. B. Johnson and G. Schechtman, On subspaces of $L_{1}$ with maximal distances to Euclidean space, Proceedings of research workshop on Banach space theory (Iowa City, Iowa, 1981) Univ. Iowa, Iowa City, IA, 1982, pp. 83–96. MR 724107
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Springer-Verlag, Berlin-New York, 1977. Sequence spaces; Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92. MR 0500056
- Alain Pajor, Plongement de $l^{n}_{1}$ dans les espaces de Banach complexes, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), no. 17, 741–743 (French, with English summary). MR 707332
- Albrecht Pietsch, Operator ideals, North-Holland Mathematical Library, vol. 20, North-Holland Publishing Co., Amsterdam-New York, 1980. Translated from German by the author. MR 582655 ---, Rosenthal’s inequality and its application in the theory of operator ideals, Proc. Internat. Conf. Operator Algebras, Ideals, ..., Teubner-Texte zur Math., Leipzig, 1978, pp. 80-88.
- Haskell P. Rosenthal, On the subspaces of $L^{p}$ $(p>2)$ spanned by sequences of independent random variables, Israel J. Math. 8 (1970), 273–303. MR 271721, DOI https://doi.org/10.1007/BF02771562
- Nicole Tomczak-Jaegermann, The weak distance between finite-dimensional Banach spaces, Math. Nachr. 119 (1984), 291–307. MR 774197, DOI https://doi.org/10.1002/mana.19841190126
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46B25,, 47B10,47B37,47D30
Retrieve articles in all journals with MSC: 46B25,, 47B10,47B37,47D30
Additional Information
Article copyright:
© Copyright 1988
American Mathematical Society