Conformally natural extension of vector fields from $S^{n-1}$ to $B^n$
HTML articles powered by AMS MathViewer
- by Clifford J. Earle
- Proc. Amer. Math. Soc. 102 (1988), 145-149
- DOI: https://doi.org/10.1090/S0002-9939-1988-0915733-2
- PDF | Request permission
Abstract:
Up to multiplication by a constant there is exactly one conformally natural continuous linear map from the space of continuous vector fields on ${S^{n - 1}}$ to the space of continuous vector fields on ${B^n}$.References
- Lars V. Ahlfors, Invariant operators and integral representations in hyperbolic space, Math. Scand. 36 (1975), 27โ43. MR 402036, DOI 10.7146/math.scand.a-11560
- Lars V. Ahlfors, Quasiconformal deformations and mappings in $\textbf {R}^{n}$, J. Analyse Math. 30 (1976), 74โ97. MR 492238, DOI 10.1007/BF02786705
- Adrien Douady and Clifford J. Earle, Conformally natural extension of homeomorphisms of the circle, Acta Math. 157 (1986), no.ย 1-2, 23โ48. MR 857678, DOI 10.1007/BF02392590
- Anthony W. Knapp, Representation theory of semisimple groups, Princeton Mathematical Series, vol. 36, Princeton University Press, Princeton, NJ, 1986. An overview based on examples. MR 855239, DOI 10.1515/9781400883974
- H. M. Reimann, Invariant extension of quasiconformal deformations, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 477โ492. MR 802511, DOI 10.5186/aasfm.1985.1053 W. P. Thurston, The geometry and topology of three-manifolds, Lecture Notes, Princeton Univ., Princeton, N. J., 1980.
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 145-149
- MSC: Primary 30C60,; Secondary 57R25
- DOI: https://doi.org/10.1090/S0002-9939-1988-0915733-2
- MathSciNet review: 915733