Some amalgam structures for Bianchi groups
HTML articles powered by AMS MathViewer
- by Charles Frohman and Benjamin Fine
- Proc. Amer. Math. Soc. 102 (1988), 221-229
- DOI: https://doi.org/10.1090/S0002-9939-1988-0920977-X
- PDF | Request permission
Abstract:
Splittings as an amalgamated sum, where one of the factors is the projective elementary matrices, are displayed for all the Bianchi groups except for the Euclidian ones. Also splittings as an HNN group, where the base is ${\text {PS}}{{\text {L}}_2}(Z)$, are given for all the Bianchi groups except ${\text {PS}}{{\text {L}}_2}({O_1})$ and ${\text {PS}}{{\text {L}}_2}({O_3})$.References
- Luigi Bianchi, Sui gruppi di sostituzioni lineari con coefficienti appartenenti a corpi quadratici immaginarî, Math. Ann. 40 (1892), no. 3, 332–412 (Italian). MR 1510727, DOI 10.1007/BF01443558 M. Baker, Ramified primes and the homology of the Bianchi groups, Inst. Hautes Études Sci., preprint, 1982.
- P. M. Cohn, On the structure of the $\textrm {GL}_{2}$ of a ring, Inst. Hautes Études Sci. Publ. Math. 30 (1966), 5–53. MR 207856
- M. Culler and P. B. Shalen, Bounded, separating, incompressible surfaces in knot manifolds, Invent. Math. 75 (1984), no. 3, 537–545. MR 735339, DOI 10.1007/BF01388642
- Benjamin Fine, The structure of $\textrm {PSL}_{2}(R)$; $R$, the ring of integers in a Euclidean quadratic imaginary number field, Discontinuous groups and Riemann surfaces (Proc. Conf., Univ. Maryland, College Park, Md., 1973) Ann. of Math. Studies, No. 79, Princeton Univ. Press, Princeton, N.J., 1974, pp. 145–170. MR 0352289
- Benjamin Fine, The $HNN$ and generalized free product structure of certain linear groups, Bull. Amer. Math. Soc. 81 (1975), 413–416. MR 372059, DOI 10.1090/S0002-9904-1975-13763-3
- Dieter Flöge, Zur Struktur der $\textrm {PSL}_{2}$ über einigen imaginär-quadratischen Zahlringen, Math. Z. 183 (1983), no. 2, 255–279 (German). MR 704107, DOI 10.1007/BF01214824 F. Grünewald and J. Schwermer, Arithmetic quotients of hyperbolic $3$-space, cusp forms and link complements, Duke Math J. 48 (1981), 183-200. A. Hatcher, Bianchi orbifolds of small discriminant, an informal report, Preprint.
- Robert Riley, Applications of a computer implementation of Poincaré’s theorem on fundamental polyhedra, Math. Comp. 40 (1983), no. 162, 607–632. MR 689477, DOI 10.1090/S0025-5718-1983-0689477-2
- J. Rohlfs, On the cuspidal cohomology of the Bianchi modular groups, Math. Z. 188 (1985), no. 2, 253–269. MR 772354, DOI 10.1007/BF01304213 D. Solitar, private correspondence.
- Richard G. Swan, Generators and relations for certain special linear groups, Advances in Math. 6 (1971), 1–77 (1971). MR 284516, DOI 10.1016/0001-8708(71)90027-2 W. Thurston, The geometry and topology of $3$-manifolds, mimeographed notes.
- Karen Vogtmann, Rational homology of Bianchi groups, Math. Ann. 272 (1985), no. 3, 399–419. MR 799670, DOI 10.1007/BF01455567
- R. Zimmert, Zur $\textrm {SL}_{2}$ der ganzen Zahlen eines imaginär-quadratischen Zahlkörpers, Invent. Math. 19 (1973), 73–81 (German). MR 318336, DOI 10.1007/BF01418852
- Heiner Zieschang, Finite groups of mapping classes of surfaces, Lecture Notes in Mathematics, vol. 875, Springer-Verlag, Berlin, 1981. MR 643627, DOI 10.1007/BFb0090465
Similar Articles
- Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20E06,, 11F06,22E40,57M99
- Retrieve articles in all journals with MSC: 20E06,, 11F06,22E40,57M99
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 221-229
- MSC: Primary 20E06,; Secondary 11F06,22E40,57M99
- DOI: https://doi.org/10.1090/S0002-9939-1988-0920977-X
- MathSciNet review: 920977