Elliptically embedded subgroups of polycyclic groups
HTML articles powered by AMS MathViewer
- by A. H. Rhemtulla and J. S. Wilson
- Proc. Amer. Math. Soc. 102 (1988), 230-234
- DOI: https://doi.org/10.1090/S0002-9939-1988-0920978-1
- PDF | Request permission
Abstract:
A subgroup $H$ of a group $G$ is elliptically embedded in $G$ if for each subgroup $K$ of $G$ there is an integer $n = n(K)$ such that $\left \langle {H,K} \right \rangle = HK \cdots HK$, where the product has $2n$ factors. It is shown that a subgroup $H$ of a polycyclic by finite group $G$ is elliptically embedded in $G$ if and only if $H$ is subnormal in some subgroup of finite index in $G$.References
- Jan-Hendrik Evertse, On sums of $S$-units and linear recurrences, Compositio Math. 53 (1984), no. 2, 225–244. MR 766298
- A. H. Rhemtulla and J. S. Wilson, On elliptically embedded subgroups of soluble groups, Canad. J. Math. 39 (1987), no. 4, 956–968. MR 915025, DOI 10.4153/CJM-1987-048-6
- A. J. van der Poorten, Additive relations in number fields, Seminar on number theory, Paris 1982–83 (Paris, 1982/1983) Progr. Math., vol. 51, Birkhäuser Boston, Boston, MA, 1984, pp. 259–266. MR 791598
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 230-234
- MSC: Primary 20E15,; Secondary 20F16
- DOI: https://doi.org/10.1090/S0002-9939-1988-0920978-1
- MathSciNet review: 920978