Path-lifting for Grothendieck toposes
HTML articles powered by AMS MathViewer
- by Ieke Moerdijk
- Proc. Amer. Math. Soc. 102 (1988), 242-248
- DOI: https://doi.org/10.1090/S0002-9939-1988-0920980-X
- PDF | Request permission
Addendum: Proc. Amer. Math. Soc. 125 (1997), 2815-2818.
Abstract:
A general path-lifting theorem, which fails in the context of topological spaces, is shown to hold for toposes, for locales (a slight generalization of topological spaces), and hence for complete separable metric spaces. This result generalizes the known fact that any connected locally connected topos (respectively complete separable metric space) is path-connected.References
- M. P. Fourman, $T_{1}$ spaces over topological sites, J. Pure Appl. Algebra 27 (1983), no. 3, 223–224. MR 688756, DOI 10.1016/0022-4049(83)90017-8
- Peter T. Johnstone, Factorization theorems for geometric morphisms. II, Categorical aspects of topology and analysis (Ottawa, Ont., 1980) Lecture Notes in Math., vol. 915, Springer, Berlin-New York, 1982, pp. 216–233. MR 659894
- André Joyal and Myles Tierney, An extension of the Galois theory of Grothendieck, Mem. Amer. Math. Soc. 51 (1984), no. 309, vii+71. MR 756176, DOI 10.1090/memo/0309
- Michael Makkai and Gonzalo E. Reyes, First order categorical logic, Lecture Notes in Mathematics, Vol. 611, Springer-Verlag, Berlin-New York, 1977. Model-theoretical methods in the theory of topoi and related categories. MR 0505486
- I. Moerdijk and G. C. Wraith, Connected locally connected toposes are path-connected, Trans. Amer. Math. Soc. 295 (1986), no. 2, 849–859. MR 833712, DOI 10.1090/S0002-9947-1986-0833712-3
- Ieke Moerdijk, Continuous fibrations and inverse limits of toposes, Compositio Math. 58 (1986), no. 1, 45–72. MR 834047
- J. Malgoire and C. Voisin, Factorisation de Stein topologique; découpe, Topology 20 (1981), no. 2, 191–207 (French). MR 605658, DOI 10.1016/0040-9383(81)90038-0
Similar Articles
- Retrieve articles in Proceedings of the American Mathematical Society with MSC: 18B25,, 18F10,54E50
- Retrieve articles in all journals with MSC: 18B25,, 18F10,54E50
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 242-248
- MSC: Primary 18B25,; Secondary 18F10,54E50
- DOI: https://doi.org/10.1090/S0002-9939-1988-0920980-X
- MathSciNet review: 920980