One-relator quotients and free products of cyclics
HTML articles powered by AMS MathViewer
- by Benjamin Fine, James Howie and Gerhard Rosenberger
- Proc. Amer. Math. Soc. 102 (1988), 249-254
- DOI: https://doi.org/10.1090/S0002-9939-1988-0920981-1
- PDF | Request permission
Abstract:
It is proven that the Freiheitssatz holds for all one-relator products of cyclic groups if the relator is cyclically reduced and a proper power. The method of proof involves representing such groups in ${\text {PS}}{{\text {L}}_2}({\mathbf {C}})$ and is a refinement of a technique of Baumslag, Morgan and Shalen. The technique allows the extension of the Freiheitssatz result to many additional one-relator products.References
- Gilbert Baumslag, John W. Morgan, and Peter B. Shalen, Generalized triangle groups, Math. Proc. Cambridge Philos. Soc. 102 (1987), no. 1, 25–31. MR 886432, DOI 10.1017/S0305004100067013
- J. Fischer, A. Karrass, and D. Solitar, On one-relator groups having elements of finite order, Proc. Amer. Math. Soc. 33 (1972), 297–301. MR 311780, DOI 10.1090/S0002-9939-1972-0311780-0
- James Howie, One-relator products of groups, Proceedings of groups—St. Andrews 1985, London Math. Soc. Lecture Note Ser., vol. 121, Cambridge Univ. Press, Cambridge, 1986, pp. 216–219. MR 896513
- James Howie, Cohomology of one-relator products of locally indicable groups, J. London Math. Soc. (2) 30 (1984), no. 3, 419–430. MR 810951, DOI 10.1112/jlms/s2-30.3.419
- A. Karrass, W. Magnus, and D. Solitar, Elements of finite order in groups with a single defining relation, Comm. Pure Appl. Math. 13 (1960), 57–66. MR 124384, DOI 10.1002/cpa.3160130107
- Rimhak Ree and N. S. Mendelsohn, Free subgroups of groups with a single defining relation, Arch. Math. (Basel) 19 (1968), 577–580 (1969). MR 242931, DOI 10.1007/BF01899384
- Gerhard Rosenberger, On discrete free subgroups of linear groups, J. London Math. Soc. (2) 17 (1978), no. 1, 79–85. MR 480771, DOI 10.1112/jlms/s2-17.1.79
- Atle Selberg, On discontinuous groups in higher-dimensional symmetric spaces, Contributions to function theory (Internat. Colloq. Function Theory, Bombay, 1960) Tata Institute of Fundamental Research, Bombay, 1960, pp. 147–164. MR 0130324
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 249-254
- MSC: Primary 20F05,; Secondary 20E06
- DOI: https://doi.org/10.1090/S0002-9939-1988-0920981-1
- MathSciNet review: 920981