Multiplicities of the eigenvalues of the discrete Schrödinger equation in any dimension
HTML articles powered by AMS MathViewer
- by Dan Burghelea and Thomas Kappeler
- Proc. Amer. Math. Soc. 102 (1988), 255-260
- DOI: https://doi.org/10.1090/S0002-9939-1988-0920982-3
- PDF | Request permission
Abstract:
The following von Neumann-Wigner type result is proved: The set of potentials $a:\;\Gamma \to {\mathbf {R}}(\Gamma \subseteq {{\mathbf {Z}}^N})$, with the property that the corresponding discrete Schrödinger equation ${\Delta _d} + a$ has multiple eigenvalues when considered with certain boundary conditions, is an algebraic set of ${\text {codimension}} \geq {\text {2}}$ within ${{\mathbf {R}}^\Gamma }$.References
- V. I. Arnol′d, Modes and quasimodes, Funkcional. Anal. i Priložen. 6 (1972), no. 2, 12–20 (Russian). MR 0297274
- S. Friedland, J. W. Robbin, and J. H. Sylvester, On the crossing rule, Comm. Pure Appl. Math. 37 (1984), no. 1, 19–37. MR 728265, DOI 10.1002/cpa.3160370104
- Anna Maria Micheletti, Perturbazione dello spettro dell’operatore di Laplace, in relazione ad una variazione del campo, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 26 (1972), 151–169 (Italian). MR 367480
- Thomas Kappeler, Multiplicities of the eigenvalues of the Schrödinger equation in any dimension, J. Funct. Anal. 77 (1988), no. 2, 346–351. MR 933973, DOI 10.1016/0022-1236(88)90091-2
- Tosio Kato, Perturbation theory for linear operators, 2nd ed., Grundlehren der Mathematischen Wissenschaften, Band 132, Springer-Verlag, Berlin-New York, 1976. MR 0407617
- Keith Kendig, Elementary algebraic geometry, Graduate Texts in Mathematics, No. 44, Springer-Verlag, New York-Berlin, 1977. MR 0447222, DOI 10.1007/978-1-4615-6899-5
- Peter D. Lax, The multiplicity of eigenvalues, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 2, 213–214. MR 640948, DOI 10.1090/S0273-0979-1982-14983-7
- Raghavan Narasimhan, Introduction to the theory of analytic spaces, Lecture Notes in Mathematics, No. 25, Springer-Verlag, Berlin-New York, 1966. MR 0217337, DOI 10.1007/BFb0077071
- K. Uhlenbeck, Generic properties of eigenfunctions, Amer. J. Math. 98 (1976), no. 4, 1059–1078. MR 464332, DOI 10.2307/2374041 J. von Neumann and E. Wigner, Über das Verhalten von Eigenwerten bei adiabatisdren Prozessen, Phys. Zschr. 30 (1929), 467-470.
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 255-260
- MSC: Primary 15A18,; Secondary 39A12
- DOI: https://doi.org/10.1090/S0002-9939-1988-0920982-3
- MathSciNet review: 920982